1. Provide an example when the Boyer-Moore bad character rule will result in a running time of \(O(m \times n)\) (\(m\) - length of text, \(n\) - length of pattern).

For extra credit (+2 points) provide an example when the Boyer-Moore algorithm would perform fewer comparisons when the bad character rule is used alone, instead of combining it with the good suffix rule (problem 7 in Chapter 2 of Gusfield).

2. Problem 9 in Chapter 2 of Gusfield:
 Let \(l'(i)\) denote the length of the largest suffix of \(P[i..n]\) that is also a prefix of \(P\), if one exists, otherwise let \(l'(i)\) be 0.

 Theorem: \(l'(i)\) equals the largest \(j \leq |P[i..n]|\) (i.e. \(j \leq n - i + 1\)) s.t. \(N_j = j\).

 Prove the theorem and describe an algorithm that computes the \(l'(i)\) values in linear time. Explain the correctness of the algorithm.

 Hint: algorithm is similar to the accumulation of the \(L'(i)\) values in the execution of Boyer-Moore.

3. Problem 6 in Chapter 3 of Gusfield:
 For each of the \(n\) prefixes of \(P\), we want to know whether prefix \(P[1..i]\) is a periodic string. That is, for each \(i\) we want to know the largest \(k > 1\) (if there is one) s.t. \(P[1..i]\) can be written as \(a^k\) for some string \(a\). Of course, we also want to know the period. Show how to determine this for all \(n\) prefixes in linear time in the length of \(P\).

 Hint: Z-algorithm.