Glossary

- Residue – any single amino-acid
- Side-chain – chemical group off the backbone
- Peptide – a short chunk of protein
- Polypeptide – protein
Threading: reverse structure prediction

- Main hypothesis: while there are many protein sequences, there are much fewer folds. I.e. nature keeps reinventing useful structures

- Given a database of structures and a query string, find which structure “fits” the string best
Initial idea: 3D-1D scores

• From a 3D structure, determine “environment” for every amino-acid
 – buried (inside the protein)
 – outside
 – inner side of helix
 – outer side of helix
 – etc...

• Annotate each position in protein with the environment information
 ACKCAHGT -> $E_1E_2E_1E_3E_4E_2E_3E_1E_4$

• Why this is reasonable? Amino-acids have “preference” for specific environments
Alignment to an environment string

• Idea: use gapped alignment algorithm to estimate how likely it is for a sequence to conform to a structure (represented as an environment string)

• $E_1 E_2 - E_1 E_3 - - E_4 E_2 - E_3 E_1 E_4$

$A G H - K T G A L K M N G$

• Question: what is the score of aligning an amino-acid to an environment?
Answer: use statistics

• For each environment – calculate likelihood (observed frequency) of all amino-acids based on known structures
• For each environment – empirical estimation of gap opening/extension penalties
• Alignment algorithm – use Gribskov’s profile method: replace each environment character with the amino-acid frequency table for that environment

\[S(E_1, G) = \sum_{AA} S(AA, G) \times freq_{E_1}(AA) \]

<table>
<thead>
<tr>
<th>Environment</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.22</td>
</tr>
<tr>
<td>K</td>
<td>0.15</td>
</tr>
<tr>
<td>W</td>
<td>0.08</td>
</tr>
</tbody>
</table>

...
Environments – not good enough

- Each amino-acid may have multiple contacts
A better model

residue interactions (and associated energy parameters)

core “modules” (helix, sheet, etc.)

variable length connections (gaps)
The threading problem

• Model assumptions:
 – loop AA composition and length contributes to energy score (note: can also place restrictions on minimum/maximum size in gaps)
 – interactions are pair-wise: interaction energy depends on at most two AAs
 – individual AAs in core modules also contribute to energy due to local environment

• Thread a protein sequence through a structure model s.t.
 – the place-holders are filled with amino-acids
 – a variable number of amino-acids fall in the gaps
 – overall energy is minimized

• Easy to say, hard to do: Thus defined (variable length gaps AND pair-wise interactions) the problem is NP-hard!
NP-hard \Rightarrow heuristics

- Branch and bound (Lathrop, Smith)
 - Represent all possible folds (search space) s.t. it is easy to compute a lower bound on the score.
 - Note: a threading is uniquely defined by the coordinates of the core elements – a set of threadings is a hyper-rectangle in a C-dimensional space where C is the # of core elements.
 - Divide search space and compute energy lower-bounds on each sub-division (choose a dimension (core) and a coordinate and split hyper-rectangle at that location).
 - Recurse on sub-division with lowest lower-bound.
NP-completeness

"I can’t find an efficient algorithm, I guess I’m just too dumb.”

"I can’t find an efficient algorithm, because no such algorithm is possible!”

From: **Computers and Intractability**
M. R. Garey and D. S. Johnson
(W. H. Freeman 1979)

"I can’t find an efficient algorithm, but neither can all these famous people.”
Threading is NP-hard - proof

• Reduction from ONE-IN-THREE 3 SAT
 – n boolean variables, k boolean clauses with exactly 3 literals
 – 3 SAT – is there a setting of the variables such that all clauses are simultaneously true?
 – ONE-IN-THREE 3SAT – 3SAT but each clause made true by exactly one literal

• Proof: for any instance of 3SAT, create an instance of the protein threading problem s.t. a solution to the threading problem implies a solution to 3SAT
Proof ...cont

• Protein sequence
 – T, F – state of each boolean value
 – P,Q,R – which literal makes a clause true
 – protein: PQRPQRPQR...TFTFTF....

• Core model
 – one core element (with one AA) for each clause
 – one core element (with one AA) for each boolean
 – interactions from each clause to the booleans present in it. edge also encodes which literal (1,2,3) and whether value is negated
 – edge score = 0 if label consistent with amino-acid assignment and 1 otherwise (e.g. QF is consistent with edge 2,NOT)
 – optimal threading has score 0 and solves 3SAT
Discussion

- Both variable length gaps and pairwise interactions are essential!
- If no variable length gaps – can try all threadings in polynomial time irrespective of interactions
- If no pairwise interactions – dynamic programming can figure out the correct assignment (essentially the alignment problem)
Structure to structure alignment

- Given two proteins with known structure, how do we align them to each other?
- Double Dynamic Programming
 - distance matrix depends on distance between residues
 - pick a pair of residues \((i,j)\) and assume they are paired up
 - use dynamic programming to align the rest of the protein – score will represent score for pairing of \(i,j\)
 - use a final dynamic programming step to align the proteins based on scores determined above
Example

Structure A

Coordinate system coincidence at a_i, b_j

B

http://www.biotec.tu-dresden.de/schroeder/group/teaching/bioinfo3/ppt/structurealignment.ppt