Writing bioinformatics software

Biological databases
Writing bioinformatics software
Libraries/utilities

- Bio::Perl (Perl)
- BioJava (Java)
- BioPython (Python)
- BioRuby (Ruby)
- seqAn (C++)
- Bioconductor (R)
- Chado (SQL)
Bio::Perl

- http://www.bioperl.org

```perl
use Bio::Perl;

my $seq = read_sequence("mytest.fa", "fasta");
my $gbseq = read_sequence("mytest.gb", "genbank");

write_sequence(">test.fasta", 'fasta', $gbseq);

' vs " ?
use Bio::Perl;

while ($seq = read_sequence("test.fa", 'fasta')) {
    if ($seq->length() > 500) {
        print $seq->primary_id(), "\n";
    }
}

Note: you still need to write your own version...
Other useful stuff

```perl
$seqio = new Bio::SeqIO(-format => 'largefasta',
 -file => 't/data/genomic-seq.fasta');
$pseq = $seqio->next_seq();

$gb = new Bio::DB::GenBank;
$seq1 = $gb->get_Seq_by_id('MUSIIGHBA1');

etc...
```
import org.biojava.bio.*;
String filename = args[0];
BufferedInputStream is =
    new BufferedInputStream(new FileInputStream(filename));
//get the appropriate Alphabet
Alphabet alpha =
AlphabetManager.alphabetForName(args[1]);

//get a SequenceDB of all sequences in the file
SequenceDB db = SeqIOTools.readFasta(is, alpha);
BioJava

• Question 5

BufferedReader br =
    new BufferedReader(new FileReader(args[0]));

String format = args[1];
String alphabet = args[2];

SequenceIterator iter =
    (SequenceIterator)SeqIOTools.fileToBiojava(format, alphabet, br);
while (iter.hasNext()){
    Sequence seq = iter.nextSequence();
    if (seq.length() > 500) {System.out.println(seq.getName());}
}

BioJava...more

• Same as Bio::Perl:
  – can directly connect to databases
  – various sequence manipulations (reverse complement, translate, etc.)
  – basic bioinformatics algorithms
  – etc.
BioPython

- http://www.biopython.org

```python
from Bio import SeqIO
handle = open("file.fasta")
seq_record = SeqIO.parse(handle, "fasta")
SeqIO.write(my_records, handle2, "fasta")
```
BioPython

- Question 5

```python
from Bio import SeqIO
handle = open("test.fasta")
for seq_record in SeqIO.parse(handle, "fasta") :
 if len(seq_record) > 500 :
 print seq_record.id
handle.close()
```
BioPython...more

- Same as Bio::Perl:
  - can directly connect to databases
  - various sequence manipulations (reverse complement, translate, etc.)
  - basic bioinformatics algorithms
  - etc.
BioRuby

- http://www.bioruby.org

```ruby
require 'bio'

input_seq = ARGF.read # reads all files in arguments

my_naseq = Bio::Sequence::NA.new(input_seq)
```
BioRuby

• Question 5

#!/usr/bin/env ruby

require 'bio'

ff = Bio::FlatFile.new(Bio::FastaFormat, ARGF)
ff.each_entry do |f|
  if f.length > 500
    puts f.entry_id
  end
end
BioRuby...more

• Same as Bio::Perl:
  – can directly connect to databases
  – various sequence manipulations (reverse complement, translate, etc.)
  – basic bioinformatics algorithms
  – etc.
SeqAn

- [http://www.seqan.de](http://www.seqan.de)

```cpp
#include <seqan/sequence.h>
#include <seqan/file.h>

using namespace seqan;
using namespace std;

String <Dna> seq;
String<char> name;
fstream f;
f.open("test.fasta");
readMeta(f, name, Fasta());
readMeta(f, seq, Fasta());```
SeqAn

- Question 5

```cpp
String <Dna> seq;
String<char> name;
fstream f;

f.open("test.fasta");

while (! f.eof()){
    readMeta(f, name, Fasta());
    readMeta(f, seq, Fasta());
    if (length(seq)) {
        cout << name << endl;
    }
}
```
SeqAn...more

- Not quite as much as Perl/Java/Python, but still lots of utilities (including graph algorithms)
R/BioConductor

- http://www.bioconductor.org
- Mainly for statistical applications, e.g. microarray analysis

```r
library("affy")
library("geneplotter")
library("gplots")

data <- ReadAffy()
eset <- rma(data)
e <- exprs(eset)
heatmap.2(e, margin=c(15,15), trace="none",
         col=redgreen(25), cexRow=0.5)
```
R/BioConductor

• Book has lots of examples
• Worth learning more about it – easy to do various cool things
• example... if time
Chado

- http://www.gmod.org
- Relational schema for storing biological data types in a relational database (e.g. MySQL, Oracle, Sybase, ...)

```
SELECT o.organism_id, o.abbreviation, o.genus, o.species,
       o.common_name, count(f.feature_id) as n_features,
       o.comment
FROM organism o LEFT JOIN feature f USING (organism_id)
GROUP by o.organism_id, o.abbreviation, o.genus, o.species,
       o.common_name, o.comment
ORDER BY o.genus, o.species
```
Chado...more

• Bio... generally provide ability to interface with relational database.
• Understanding SQL and Chado is useful irrespective of language used.
• Relational DB particularly useful for web services
• Gbrowse example....if time
Programming for bioinformatics

• Details of specialized libraries beyond scope of course
• Good software engineering practices are essential
• Often, “correct” is undefined – output of program defines correctness
• Pitfalls – e.g. papers retracted from Science due to software bugs

• Key – be proactive and learn by yourselves from online resources!