CMSC423: Bioinformatic Algorithms, Databases and Tools
Lecture 6

Exact string matching
Suffix trees
Suffix arrays
String matching
Sequence alignment: exact matching

ACAGGTACAGTTCCCTCGACACCTACTACCTAAG Text
CCTACT
CCTACT
CCTACT
CCTACT

for i = 0 .. len(Text) {
 for j = 0 .. len(Pattern) {
 if (Pattern[j] != Text[i]) go to next i
 }
 if we got there pattern matches at i in Text
}

Running time = O(len(Text) * len(Pattern)) = O(mn)

What string achieves worst case?
Worst case?

\[(m - n + 1) \times n \text{ comparisons}\]
Can we do better?

the Z algorithm (Gusfield)

For a string T, Z[i] is the length of the longest prefix of T[i..m] that matches a prefix of T. Z[i] = 0 if the prefixes don't match.

T[0 .. Z[i]] = T[i .. i+Z[i] -1]

\[
\begin{array}{cccc}
Z[i] & i & i + Z[i] - 1 & m \\
A & & & T \\
\end{array}
\]
Example Z values

ACAGGTACAGTTCCCTCGACACCTACTACCTAAG
0010004010000000003010002002000110
Can the Z values help in matching?

Create string Pattern$Text where $ is not in the alphabet

If there exists i, s.t. $Z[i] = \text{length}(\text{Pattern})$
Pattern occurs in the Text starting at i
example matching

CCTACT$ACAGGTACAGTTCCCTCGACACCTACTACCTAAG
01001000100000100002310100106100100410000

• What is the largest Z value possible?
Can Z values be computed in linear time?

\[
\text{AAAGGTACAGTTCCCTCGACACCTACTACCTAAG}
\]

\(Z[1] = 2\)

This simple process is still expensive:

- \(T[2]\) is compared when computing both \(Z[1]\) and \(Z[2]\).

Trick to computing Z values in linear time:

- each comparison must involve a character that was not compared before

Since there are only \(m\) characters in the string, the overall # of comparisons will be \(O(m)\).
Basic idea: 1-D dynamic programming

Can Z[i] be computed with the help of Z[j] for j < i?

Assume there exists j < i, s.t. j + Z[j] – 1 > i then Z[i – j + 1] provides information about Z[i].

If there is no such j, simply compare characters T[i..] to T[0..] since they have not been seen before.
Three cases

Let $j < i$ be the coordinate that maximizes $j + Z[j] - 1$ (intuitively, the $Z[j]$ that extends the furthest)

I. $Z[i - j + 1] < Z[j] - i + j - 1$ => $Z[i] = Z[i - j + 1]$

III. $Z[i - j + 1] = Z[j] - i + j - 1$ => $Z[i] = ??$, compare from $i + Z[i - j + 1]$
Time complexity analysis

• Why do these tricks save us time?

1. Cases I and II take constant time per Z-value computed –
total time spent in these cases is O(n)

2. Case III might involve 1 or more comparisons per Z-value
however:
 - every successful comparison (match) shifts the
 rightmost character that has been visited
 - every unsuccessful comparison terminates the “round”
 and algorithm moves on to the next Z-value

 total time spent in III cannot be more than # of characters in
 the text

Overall running time is O(n)