Course: CMSC 424 – Database design
Instructor: Mihai Pop
Times: TuTh 11:00-12:15
Location: CSIC 1121

Office hours:
 Wed, 11-12, AVW 3223
 and by appointment

TA: Sharath Srinivas
TA office hours: TBA

Class website:
http://www.cbcb.umd.edu/confcour/CMSC424.shtml
Textbook: Database systems concepts.
Silberschatz, Korth, Sudarshan

Note: Lectures trump book
Both owned by Larry Ellison, CEO of Oracle

It pays to know databases!
Workload

• Exams: 2 midterms, 1 final
• Projects: 1 group programming project - build a database that does something cool (TBA)
• Homeworks: ~4 homeworks throughout the semester (some include SQL programming)

• Grading:
 – homeworks 10%
 – midterms 25%
 – final 25%
 – project 40%
Policies

• Attendance - follow University policy
 – you must claim excused absences in writing
 – written documentation of illness is required (from Dr. not yourselves)
 – if possible inform me prior to the class you will skip

• Disabilities
 – must inform me during the first 2 weeks of the semester if special accommodations necessary
 – request letter from Office of Disability Support Services

• General – communication is key
 – talk to me about any issues whether covered or not by University policies
Academic Honesty

http://www.studenthonorcouncil.umd.edu/code.html

• No cheating on homeworks/projects/exams
• No making up data/results
• No copying of other people’s code
• You can work together on homeworks/projects but WRITE THE ANSWER BY YOURSELF

I pledge on my honor that I have not given or received any unauthorized assistance on this examination.
Addl. Rules

• NO EXCUSE FOR CHEATING!

• NO LAPTOPS IN CLASS!
Why go through all this?

• Database administrators are paid well
• Databases are everywhere (i.e. lots of job opportunities)
 – E.g. Google
 – at the doctor's office
 – payroll systems
 – on Wall Street
 – government (e.g. CIA)
 – scientific data
• Database research offers many exciting opportunities
 – Internet technologies
 – handling huge amounts of data
 – etc.
Databases in the wild

• Database assembles US warnings of Saddam threat – Reuters (1/23/2008)
 – can search by keywords
 – summarizes statistics
 – assembled from a number of sources
 – manual curation/entry

• Google
 – database of searches (google trends)
 – database of emails (gmail)
 – database of publications (google scholar)
 – ...
 – privacy issues

• Bio-medical databases
 – doctor's office, lab providers, hospitals, research institutes
 – insurance companies
 – who/how/when/how much information shared?
Motivation: Data Overload

• Much more is produced every day

Wal-mart: 583 terabytes of sales and inventory data
Adds a billion rows every day
“we know how many 2.4 ounces of tubes of toothpastes sold yesterday and what was sold with them”

Yes we can do it; is there any point to it?

[[“library of congress --> 20 TBs”]]
Motivation: Data Overload

• Much more is produced every day

Neilsen Media Research: 20 GB a day; total 80-100 TB
From where ???
 12000 households or personal meters
 Extending to iPods and TiVos in recent years

Is there a point beyond telling you what great TV shows you are missing ?
Motivation: Data Overload

- Scientific data is literally astronomical on scale

 Sanger Center – 22 TB doubling every 10 months
 GenBank – 252 GB
 Trace Archive – 1.8 billion records (> 2 TB)

 New technologies – bwtn. 1TB and 100TB / day

Shameless plug: CMSC 423: bioinformatic algorithms, databases and tools. Fall 2008

Sloan Digital Sky Survey – 15 TB
Motivation: Data Overload

• Automatically generated data through instrumentation

“Britain to log vehicle movements through cameras. 35 million reads per day.”

Wireless sensor networks are becoming ubiquitous. RFID: Possible to track every single piece of product throughout its life (Gillette boycott)
Motivation: Data Overload

- How do we do *anything* with this data?
- Where and how do we store it?
 - Disks are doubling every 18 months or so -- not enough
- How do we search through it?
 - Text search?
 - “how much time from here to pittsburgh if I start at 2pm?”
 - Data is there; more will be soon (live traffic data)
Motivation: Data Overload

• What if the disks crash?
 ● Very common, especially if we are talking about 1000’s of disks storing a single system

• Speed!!
 – Imagine a bank and millions of ATMs
 ● How much time does it take you to do a withdrawal?
 ● The data is not local
 – How do we ensure “correctness”?
 ● Can’t have money disappearing
 ● Harder than you might think
DBMS to the Rescue

• Provide a systematic way to answer most of these questions…
• Aim is to allow easy management of data
 – Store it
 – Update it
 – Query it
• Massively successful for *structured* data
 – What do I mean by that?
Structured vs Unstructured

A lot of the data we encounter is *structured*
- Some have very simple structures
- E.g. Data that can be represented in tabular forms
- Significantly easier to deal with
- We will actually focus on such data for much of the class

<table>
<thead>
<tr>
<th>Account</th>
<th>Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>bname</td>
<td>cname</td>
</tr>
<tr>
<td>A-101</td>
<td>Jones</td>
</tr>
<tr>
<td>A-215</td>
<td>Smith</td>
</tr>
<tr>
<td>Downtown</td>
<td>Hayes</td>
</tr>
<tr>
<td>A-102</td>
<td>Curry</td>
</tr>
<tr>
<td>Mianus</td>
<td>Lindsay</td>
</tr>
<tr>
<td>A-305</td>
<td></td>
</tr>
<tr>
<td>Perry</td>
<td></td>
</tr>
<tr>
<td>R.H</td>
<td></td>
</tr>
</tbody>
</table>
Structured vs Unstructured

• Some data has a little more complicated structure
 – E.g graph structures
 • Map data, social networks data, the web link structure etc
 – In many cases, can convert to tabular forms (for storing)
 – Slightly harder to deal with
 • Queries require dealing with the graph structure
Collaborations Graph

Query: Find my Erdos Number.
Structured vs Unstructured

- Increasing amount of data in a *semi-structured* format
 - XML – Self-describing tags
 - Complicates a lot of things
 - We will discuss this toward the end
Structured vs Unstructured

• A huge amount of data is unfortunately *unstructured*
 – Books, WWW
 – Amenable to pretty much only *text search*
 • Information Retrieval deals with this topic
 – What about Google?
 • Google is actually successful because it uses the structure
DBMS to the Rescue

• Provide a systematic way to answer most of these questions…
 – … for structured data
 – … increasing for semi-structured data
 • XML database systems have been coming up

• Solving the same problems for truly unstructured data remains an open problem
 – Much research in Information Retrieval community
 – think YouTube (what does a query for “train” retrieve)
DBMS to the Rescue

- They are everywhere!!
- Enterprises
 - Banks, airlines, universities
- Internet
 - Searchsystems.net lists 35568 public records DBs
 - Amazon, Ebay, IMDB
- Blogs, social networks…
- Your computer (emails especially)
- …
Out of scope…

• How do we guarantee the data will be there 10 years from now?
 – Much harder than you might think

• Privacy and security !!!
 – Every other day we see some database leaked on the web

• New kinds of data
 – Scientific/biological, Image, Audio/Video, Sensor data etc

• Interesting research challenges!
What we will cover...

• representing information
 – data modeling

• languages and systems for querying data
 – complex queries & query semantics
 – over massive data sets

• concurrency control for data manipulation
 – controlling concurrent access
 – ensuring transactional semantics

• reliable data storage
 – maintain data semantics even if you pull the plug
What we will cover…

• We will see…
 – Algorithms and cost analyses
 – System architecture and implementation
 – Resource management and scheduling
 – Computer language design, semantics and optimization
 – Applications of AI topics including logic and planning
 – Statistical modeling of data
What we will cover…

• We will mainly discuss structured data
 – That can be represented in tabular forms (*called Relational data*)
 – We will spend some time on XML

• Still the biggest and most important business
 – Well defined problem with really good solutions that work
 • Contrast XQuery for XML vs SQL for relational
 – Solid technological foundations

• Many of the basic techniques however are directly applicable
 – E.g. reliable data storage etc

• Many other data management problems you will encounter can be solved by extending these techniques