Admin issues

• Questions about midterm?
• Questions about project?
Sample midterm questions

- Do I need to know about: 4NF, multivalued dependencies? - NO
- 1. Given the schema R(A,B,C,D,E), and functional dependencies A→D, B→C, CD→E, A→BC, E→B.
 - a) Is the schema in BCNF? If not, list an FD that violates BCNF.
 - b) Is the schema in 3NF? If not, list an FD that violates 3NF.
- Decompose the schema from problem 1 into BCNF and 3NF.
Oracle: explain plan

delete plan_table;
explain plan for
select name
from country
where population > 10000000;

Explained

select
 substr(lpad(' ', level – 1) || operation || ' (' || options || ')', 1, 30) "Operation",
 object_name "Object"
from
 plan_table
start with id = 0
connect by prior id = parent_id;

Operation Object
------------------------------ ------------------------------
SELECT STATEMENT ()
TABLE ACCESS (FULL) COUNTRY
How to think about query processing

• \(n(r), b(r), f(r), V(A, r), SC(A, r) \) – values that can be computed without knowing what query you might run
• Think about how many results your query might retrieve
• Think about how they are organized on disk:
 – sorted (\(A \) is a clustering index)
 – unsorted (\(A \) is a secondary index)
• Think about how the index is organized – how many index blocks you need to hit to find the correct answer?
• Usually think of either average or worst-case scenarios.
• When retrieving range – think about what fraction that range represents from the total range of values in database.
Selection / Projection File Scan

- **A1:** search for equality: \(R.A = c \)
 cost (seq. search rel. sorted)
 \[
 = \frac{b(r)}{2} + \left\lceil \frac{SC(A,r)}{f(r)} \right\rceil - 1 \quad \text{average successful}
 \]
 \[
 = \frac{b(r)}{2} \quad \text{average unsuccessful}
 \]

- **A2:** (binary search)
 \[
 = \left\lceil \log \frac{b(r)}{2} \right\rceil + \left\lceil \frac{SC(A,r)}{f(r)} \right\rceil - 1 \quad \text{average successful}
 \]

- **Size of the result:** \(n(\sigma(R.A = c)) = SC(A,r) = \frac{n(r)}{V(A,r)} \)

- **search for inequality:** \(R.A > c \)
 - cost (file unsorted) = \(b(r) \)
 - (sorted on \(A \)) = \(\frac{b(r)}{2} + \frac{b(r)}{2} \) (if we assume that half of the tuples qualify)

 - size of the result: \(n(\sigma(R.A > c)) = \left[\max(A,r) - c \right] \times \frac{n(r)}{\left[\max(A,r) - \min(A,r) \right]} \)

- **projection on \(A \)**
 - cost as above
 - size of the result: \(n(\pi(R,A)) = V(A,r) \)
Selection with Indexed Scan \(R.A=c \)

- **A3:** Primary index on key:
 - cost = \((\text{height} + 1) + 1\)
 - height+1 is needed to get to the leaves (unsuccessful stops at the leaves)

- **A4:** Primary (clustering) index on non-key:
 - cost = \((\text{height} + 1) + 1 + \lceil \frac{\text{SC}(A,r)}{f(r)} \rceil\)
 - all tuples with the same value are clustered

- **A5:** Secondary (non-clustering) index
 - cost = \((\text{height} + 1) + 1 + \text{SC}(A,r)\)
 - tuples with the same value are scattered
 - It can be very expensive

 - size of the result: \(n(\sigma(R.A=c)) = \text{SC}(A,r) = \frac{n(r)}{V(A,r)} \)
Selection with Indexed Scan R.A>=c

A6: Primary index on key:
- search for A=c; then pick tuples with A >= c
- cost = (height + 1) + b(r)/2 w/o a bound constant c

 = -“- + n(r) (max(A,r)-c)/(max(A,r)-min(A,r))/f(r)

- Primary (clustering) index on non-key:
 - cost = as above (all tuples with the same value are clustered)

A7: Secondary (non-clustering) index
- cost = (height + 1) + B-treeLeaves/2 + n(r)/2 or

 = -“- + -“- +

 + {1 + SC(A,r)}((max(A,r)-c)

 tuples with the same value are scattered
 can be more expensive than file scan

 - size of the result:

 \[n(\sigma(R.A>c)) = \left[\frac{[\max(A,r)-c] \times n(r)}{[\max(A,r) - \min(A,r)]} \right] \]