CMSC 424 – Database design
Lecture 25
Special databases
Data warehouses
Data mining/Information retrieval

Mihai Pop
Admin

• Course evaluation:
 http://www.CourseEvalUM.umd.edu
• Review sessions: Thursday & Monday
 – e-mail me topics to cover, questions, problems, etc.
“Special” databases

- Biological data
- Geographic data – GIS
- Movies
- etc.

- New types of queries
- New ways of indexing data
- Storing/retrieval issues (e.g. large sizes, streaming, real-time, etc.)
Examples

• Biological data
 – refinement of “like” queries: find sequences that are “related”

Query: 1 MSVMYKKILYPTDFSETAELKHKVAKFKTLKAEEVILLHVIDEREIJKKRDFSSLGLGVA 60
 M M++K+L+PTDFSE A A++ ++ EVILLHVIDE +++ L+ G +
Sbjct: 1 MIFMFRKVLFPTDFSEGAYRAVEVFKRNKMEVGEVILLHVIDEGTLEE------LMDGYS 55

• Spatial/geographic data (GIS)
 – find all Home Depot stores within 15 miles of Baltimore
 – find a point in Maryland that's farther than 15 miles from the nearest Lowes and is densely populated
 – find all cities within lat/lon square: 39.00 N, 40.00 N, 76.00W, 77.00W.

 – special/spatial index: R-tree
R-tree (chap. 24)

- Binary search tree on Y-coordinate
- Each internal node contains search structure on X-coordinate for all points with Y coordinates in the corresponding subtree
OLAP (chap. 18)

On-line Analytical Processing

Why?
- Exploratory analysis
 - Interactive
 - Different queries than typical SQL queries
- Data CUBE
 - A summary structure used for this purpose
 - E.g. give me total sales by zipcode; now show me total sales by customer employment category
 - Much much faster than using SQL queries against the raw data
 - The tables are huge

Applications:
- Sales reporting, Marketing, Forecasting etc etc
Cross Tabulation of sales by item-name and color

<table>
<thead>
<tr>
<th>item-name</th>
<th>color</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dark</td>
<td>pastel</td>
<td>white</td>
<td>Total</td>
</tr>
<tr>
<td>skirt</td>
<td>8</td>
<td>35</td>
<td>10</td>
<td>53</td>
</tr>
<tr>
<td>dress</td>
<td>20</td>
<td>10</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>shirt</td>
<td>14</td>
<td>7</td>
<td>28</td>
<td>49</td>
</tr>
<tr>
<td>pant</td>
<td>20</td>
<td>2</td>
<td>5</td>
<td>27</td>
</tr>
<tr>
<td>Total</td>
<td>62</td>
<td>54</td>
<td>48</td>
<td>164</td>
</tr>
</tbody>
</table>

- The table above is an example of a cross-tabulation (cross-tab), also referred to as a pivot-table.
- Values for one of the dimension attributes form the row headers.
- Values for another dimension attribute form the column headers.
- Other dimension attributes are listed on top.
- Values in individual cells are (aggregates of) the values of the dimension attributes that specify the cell.
A **data cube** is a multidimensional generalization of a cross-tab.

Can have n dimensions; we show 3 below.

Cross-tabs can be used as views on a data cube.
Data federation

- E.g. biological data:
 - VectorBase – organisms that carry human disease (e.g. mosquito)
 - Flybase – fruit flies
 - InsectBase???
- Federation - combining multiple databases into a single virtual database
- Has many issues:
 - schema translation?
 - common vocabulary? (e.g. ontologies, semantic web)
 - privacy/security
 - performance
- Non-biological: SkyServer/SkyQuery (Sloan Digital Sky Survey)
Data warehouses

• Brute-force solution to federation:
 – download all databases
 – convert them to a common schema
 – provide a common interface

• Problems:
 – data storage & duplication
 – hard to keep up to date
 – performance (single point of entry/ failure)

• Examples:
 – GenBank (US biological data repository)
 – Ensembl (EU biological data repository)
Data Mining

• Searching for patterns in data
 – Typically done in data warehouses

Association Rules:
★ When a customer buys X, she also typically buys Y
★ Use ?
 • Move X and Y together in supermarkets
 – A customer buys a lot of shirts
 ➢ Send him a catalogue of shirts
★ Patterns are not always obvious
 • Classic example: It was observed that men tend to buy beer and diapers together (may be an urban legend)

• Other types of mining
 ★ Classification
 ★ Decision Trees
Information retrieval (chap. 19)

• Extracting **meaning** from **data**
• Examples:
 – Google (document indexing/ranking)
 – Image search
 – Automatic annotation of documents, e.g. extracting information from bio-medical literature
What's next?

• Databases for new types of data (e.g. biological or social networks)
• Streaming databases (Comcast OnDemand)
• Large amounts of data
• Security/Privacy