CMSC 424 – Database design
Lecture 3:
Entity-Relationship Model

Book: Chap. 1 and 6

Mihai Pop
Database Design Steps

Entity-relationship Model
Typically used for conceptual database design

Three Levels of Modeling

Relational Model
Typically used for logical database design

Conceptual DB design
- Conceptual Data Model

Logical DB design
- Logical Data Model

Physical DB design
- Physical Data Model
Problems in our First Design

- does not capture the fact that a library carries books of a specific author
- does not capture the fact that a library carries a specific book
- does not capture the fact that an author has written a specific book
- does not store which edition of the book the library has, how many copies, etc.
• Much better
Next: Types of Attributes

• Simple vs Composite
 • Single value per attribute?

• Single-valued vs Multi-valued
 • E.g. Phone numbers are multi-valued

• Derived
 • If date-of-birth is present, age can be derived
 • Can help in avoiding redundancy, enforcing constraints etc…
Types of Attributes

customer

cust-name

access-date

number

balance

cust-id

cust-street

cust-city
Types of Attributes

- **multi-valued** (double ellipse) (one can have many phone numbers)
- **derived** (dashed ellipse) (age can be computed from birth date)
Types of Attributes

- customer
- cust-street
- cust-id
- cust-name
- cust-city
- has
- account
- balance
- number
- access-date
- age
- phone no.
- date-of-birth
- month
- day
- year

Composite Attribute
Next: Keys

• Key = set of attributes that uniquely identifies an entity or a relationship
Entity Keys

- `{cust-id}` is a natural primary key
- Typically, SSN forms a good primary key
- Try to use a candidate key that rarely changes
 - e.g. something involving address not a great idea

Diagram:
- cust-name
- cust-id
- cust-street
- cust-city
- date-of-birth
- age
- phone no.
Entity Keys

- **Superkey**
 - any set of attributes that can distinguish entities

- **Candidate key**
 - a minimal superkey
 - Can’t remove any attribute and preserve key-ness
 - {cust-id, age} not a candidate key
 - {cust-name, cust-city, cust-street} is
 - assuming cust-name is not unique

- **Primary key**
 - Candidate key chosen as *the* key by DBA
 - Underlined in the ER Diagram
• `{cust-id}` is a natural primary key
• Typically, SSN forms a good primary key
• Try to use a candidate key that rarely changes
 • e.g. something involving address not a great idea
Relationship Set Keys

• What attributes are needed to represent a relationship completely and uniquely?
 – Union of primary keys of the entities involved, and relationship attributes
 – \{cust-id, access-date, account number\} describes a relationship completely
Relationship Set Keys

- Is \(\{cust-id, access-date, account\ number\}\) a candidate key?
 - No. Attribute \(access-date\) can be removed from this set without losing key-ness.
 - In fact, union of primary keys of associated entities is always a superkey.
Relationship Set Keys

- Is \{cust-id, account-number\} a candidate key?
 - Depends
• Is \{cust-id, account-number\} a candidate key?
 – Depends

 • If one-to-one relationship, either \{cust-id\} or \{account-number\} sufficient
 • Since a given customer can only have one account, she can only participate in one relationship
 • Ditto account
Relationship Set Keys

- Is \{\text{cust-id, account-number}\} a candidate key?
 - Depends

- If one-to-many relationship (as shown), \{\text{account-number}\} is a candidate key
 - A given customer can have many accounts, but at most one account holder per account allowed
Relationship Set Keys

• General rule for binary relationships
 • one-to-one: primary key of either entity set
 • one-to-many: primary key of the entity set on the many side
 • many-to-many: union of primary keys of the associate entity sets

• n-ary relationships
 • More complicated rules
• What have we been doing

• Why?

• Understanding this is important
 • Rest are details !!
 • That’s what books/manuals are for.
Next: Recursive Relationships

• Sometimes a relationship associates an entity set to itself
Recursive Relationships

Must be declared with roles

emp-id
emp-name
emp-street
emp-city

employee

manager
worker

works-for
Next: Weak Entity Sets

• An entity set without enough attributes to have a primary key
• E.g. Transaction Entity
 – Attributes:
 • transaction-number, transaction-date, transaction-amount, transaction-type
 • transaction-number: may not be unique across accounts
Weak Entity Sets

• A weak entity set must be associated with an identifying or owner entity set
• Account is the owner entity set for Transaction
Weak Entity Sets

Still need to be able to distinguish between different weak entities associated with the same strong entity
Weak Entity Sets

Discriminator: A set of attributes that can be used for that
Weak Entity Sets

- Primary key:
 - Primary key of the associated strong entity +
 discriminator attribute set
 - For Transaction:
 - \{account-number, transaction-number\}
Example Design

• We will model a university database
 – Main entities:
 • Professor
 • Projects
 • Departments
 • Graduate students
 • etc…
Thoughts…

• Nothing about actual data
 – How is it stored?

• No talk about the query languages
 – How do we access the data?

• Semantic vs Syntactic Data Models
 – Remember: E/R Model is used for conceptual modeling
 – Many conceptual models have the same properties

• They are much more about representing the knowledge than about database storage/querying
Thoughts…

• Basic design principles
 – Faithful
 • Must make sense
 – Satisfies the application requirements
 – Models the requisite domain knowledge
 • If not modeled, lost afterwards
 – Avoid redundancy
 • Potential for inconsistencies
 – Go for simplicity

• Typically an iterative process that goes back and forth
Design Issues

• Entity sets vs attributes
 – Depends on the semantics of the application
 – Consider *telephone* (entity: customer, attribute: telephone)
 or (entity: telephone, entity: customer, relationship: customer_phone)

• Entity sets vs Relationship sets
 – Consider *loan* (entity or relationship between customer and bank?)

• N-ary vs binary relationships
 • Possible to avoid n-ary relationships, but there are some cases where it is advantageous to use them

• It is not an exact science !!