Proving that Boyer Moore runs in linear time

When running the algorithm
the pattern is matched to the text until a mismatch found and then shift the pattern to the right. The goal
is to shift by the least amount of characters.

Definitions

$|\alpha|$ - period

Periodic string $S = \alpha \alpha \alpha \alpha \ldots (\alpha^i)$

many strings are not fully periodic

Semi-periodic $S = \text{suf}(\alpha) \alpha^i$

e.g.

```
TGACTGACTGACTGACTGACTG
```

Prefix semi-periodic $S = \alpha^i\text{pref}(\alpha)$

Every semi-periodic string is also prefix semi-periodic. A is different, but both definitions work for such a string.

Lemma:

$S = \delta\gamma = \gamma\delta \Rightarrow \delta = \alpha^i, \gamma = \alpha^j$

assume $|S| = n$ and $|\delta| > |\gamma|$

$\delta\gamma = \gamma \delta$

$\delta\gamma'\gamma = \gamma\gamma'\delta \Rightarrow \gamma'\gamma = \gamma\gamma' \Rightarrow$ by induction δ is periodic so γ is also periodic
If P matches at positions p and p' in text and p – p' < |p|/2 then p is semi-periodic with period p' – p

Definitions

- \(t_i \): set of characters that were matched at phase i
- \(p \): suffix of pattern that contains both \(t_i \) and one more mismatched character \(|p| = |t_i| + 1 \)
- \(S_i \): # of characters that I jumped at phase i
- \(\beta \): the smallest possible period of \(\alpha \)
- \(\alpha \): \(\alpha = \beta \) – smallest \(\beta \) such that \(\alpha = \beta' \)
- \(g_{i+1} \): # of characters matched in phase \(i + 1 \) not for the first time

\(|t_i| + 1 = g_{i+1} + g'_i\)

We will prove that \(g_i < 3S_i \)
\[\sum_{i} (g_i + g'_i) \leq m + \sum_{i} g_i \leq m + 3 \sum_{i} S_i \leq m + 3m = 4m \]

if \(S_i \geq (|t_i| + 1)/3 \) then \(g_i < 3S_i \) trivially

assume \(S_i \geq (|t_i| + 1)/3 \)

I

If \(S_i \geq (|t_i| + 1)/3 \) then \(p \& t_i \) are semi-periodic with period \(\alpha \). The proof is the same as Lemma (shifting strings)

II

At stage \(h < i \) end of \(P \) cannot coincide with boundary of \(\beta \) unit

we know that after stage \(h \) we shifted pattern somewhere. We have two possibilities:
1. Pattern matched the boundary of \(\beta \) -> clearly we could not shifted beyond \(i \) -> this option is not possible
2. Shifted such that we hit somewhere inside \(\beta \) boundary -> not possible either since \(\beta \) is the smallest possible shift and if such shift happened it would contradict that \(\beta \) is the smallest.

III

At any stage \(h < i \) “work < |\beta| \) in other words \(th overlaps t_i < |\beta| \)

\(x | \beta | \beta | \beta \) => this implies that \(\beta \) is not smallest => contradiction => at any stage our work does not overlap
IV

At stage \(h < i \) the rightmost end of pattern can only line up with the rightmost \(|\beta| - 1 \) characters of \(t_i \), or leftmost \(|\beta| \) characters of \(t_i \).
We prove that it is impossible to escape the boundaries of \(\beta \).

\[
\begin{array}{c}
\times \\
\ldots \\
\ldots
\end{array}
\]

We show that \(g_i < 3 \beta \), we know that \(\beta \leq S_i \Rightarrow g_i \leq 3S_i \)

of characters I saw in past is bounded by shifts I do and # of shifts is bounded by \(m \) \Rightarrow \(g_i \leq m \)