@proceedings {38176, title = {Computing the Tree of Life: Leveraging the Power of Desktop and Service Grids}, year = {2011}, month = {2011}, type = {10.1109/IPDPS.2011.344}, abstract = {The trend in life sciences research, particularly in molecular evolutionary systematics, is toward larger data sets and ever-more detailed evolutionary models, which can generate substantial computational loads. Over the past several years we have developed a grid computing system aimed at providing researchers the computational power needed to complete such analyses in a timely manner. Our grid system, known as The Lattice Project, was the first to combine two models of grid computing - the service model, which mainly federates large institutional HPC resources, and the desktop model, which harnesses the power of PCs volunteered by the general public. Recently we have developed a "science portal" style web interface that makes it easier than ever for phylogenetic analyses to be completed using GARLI, a popular program that uses a maximum likelihood method to infer the evolutionary history of organisms on the basis of genetic sequence data. This paper describes our approach to scheduling thousands of GARLI jobs with diverse requirements to heterogeneous grid resources, which include volunteer computers running BOINC software. A key component of this system provides a priori GARLI runtime estimates using machine learning with random forests.}, keywords = {(artificial, (mathematics), analysis, BOINC, COMPUTATION, computational, computing, data, Estimation, evolutionary, GARLI, genetic, Grid, GRIDS, handling, heterogeneous, History, HPC, information, intelligence), interface, interfaces, Internet, jobs, lattice, learning, life, likelihood, load, machine, maximum, method, model, molecular, phylogenetic, portal, Portals, power, project, resource, Science, sequence, service, services, sets, software, substantial, system, systematics, tree, TREES, user, Web}, author = {Adam L. Bazinet and Michael P. Cummings} } @article {38561, title = {Validating the systematic position of {\i}t Plationus Segers, Murugan \& Dumont, 1993 (Rotifera: Brachionidae) using sequences of the large subunit of the nuclear ribosomal DNA and of cytochrome C oxidase}, journal = {HydrobiologiaHydrobiologia}, volume = {644}, year = {2010}, type = {DOI 10.1007/s10750-010-0203-1}, abstract = {Members of the family Brachionidae are free-living organisms that range in size from 170 to 250 microns. They comprise part of the zooplankton in freshwater and marine systems worldwide. Morphologically, members of the family are characterized by a single piece loricated body without furrows, grooves, sulci or dorsal head shields, and a malleate trophi. Differences in these structures have been traditionally used to recognize 217 species that are classified into seven genera. However, the validity of the species, Plationus patulus, P. patulus macracanthus P. polyacanthus, and P. felicitas have been confused because they were alternatively assigned in Brachionus or Platyias, when considering only morphological and ecological characters. Based on scanning electron microscope (SEM) images of the trophi, these taxa were assigned in a new genus, Plationus. In this study, we examined the systematic position of P. patulus and P. patulus macracanthus using DNA sequences of two genes: the cytochrome oxidase subunit 1 (cox1) and domains D2 and D3 of the large subunit of the nuclear ribosomal RNA (LSU). In addition, the cox1 and LSU sequences representing five genera of Brachionidae (Anuraeopsis, Brachionus, Keratella, Plationus, and Platyias) plus four species of three families from the order Ploima were used as the outgroup. The maximum likelihood (ML) analyses were conducted for each individual gene as well as for the combined (cox1 + LSU) data set. The ML tree from the combined data set yielded the family Brachionidae as a monophyletic group with weak bootstrap support (< 50\%). Five main clades in this tree had high (> 85\%) bootstrap support. The first clade was composed of three populations of P. patulus + P. patulus macracanthus. The second clade was composed of a single species of Platyias. The third clade was composed of six species of Brachionus. The fourth clade included a single species of the genus Anuraeopsis, and the fifth clade was composed of three species of the genus Keratella. The genetic divergence between Plationus and Platyias ranged from 18.4 to 19.2\% for cox1, and from 4.5 to 4.9\% for LSU, and between Brachionus and Plationus, it ranged from 16.9 to 23.1\% (cox1), and from 7.3 to 9.1\% (LSU). Morphological evidence, the amount of genetic divergence, the systematic position of Plationus within the family Brachionidae, and the position of Plationus as a sister group of Brachionus and Platyias support the validity of Plationus patulus and P. patulus macracanthus into the genus Plationus.}, keywords = {Cox1, likelihood, LSU, maximum, Phylogeny, Plationus}, author = {Reyna-Fabian, M. E. and Laclette, J. P. and Michael P. Cummings and Garc{\'\i}a-Varela, M.} }