@article {38556, title = {Unexpected abundance of coenzyme F(420)-dependent enzymes in Mycobacterium tuberculosis and other actinobacteria}, journal = {Journal of bacteriologyJournal of bacteriology}, volume = {192}, year = {2010}, note = {http://www.ncbi.nlm.nih.gov/pubmed/20675471?dopt=Abstract}, type = {10.1128/JB.00425-10}, abstract = {Regimens targeting Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), require long courses of treatment and a combination of three or more drugs. An increase in drug-resistant strains of M. tuberculosis demonstrates the need for additional TB-specific drugs. A notable feature of M. tuberculosis is coenzyme F(420), which is distributed sporadically and sparsely among prokaryotes. This distribution allows for comparative genomics-based investigations. Phylogenetic profiling (comparison of differential gene content) based on F(420) biosynthesis nominated many actinobacterial proteins as candidate F(420)-dependent enzymes. Three such families dominated the results: the luciferase-like monooxygenase (LLM), pyridoxamine 5{\textquoteright}-phosphate oxidase (PPOX), and deazaflavin-dependent nitroreductase (DDN) families. The DDN family was determined to be limited to F(420)-producing species. The LLM and PPOX families were observed in F(420)-producing species as well as species lacking F(420) but were particularly numerous in many actinobacterial species, including M. tuberculosis. Partitioning the LLM and PPOX families based on an organism{\textquoteright}s ability to make F(420) allowed the application of the SIMBAL (sites inferred by metabolic background assertion labeling) profiling method to identify F(420)-correlated subsequences. These regions were found to correspond to flavonoid cofactor binding sites. Significantly, these results showed that M. tuberculosis carries at least 28 separate F(420)-dependent enzymes, most of unknown function, and a paucity of flavin mononucleotide (FMN)-dependent proteins in these families. While prevalent in mycobacteria, markers of F(420) biosynthesis appeared to be absent from the normal human gut flora. These findings suggest that M. tuberculosis relies heavily on coenzyme F(420) for its redox reactions. This dependence and the cofactor{\textquoteright}s rarity may make F(420)-related proteins promising drug targets.}, keywords = {Actinobacteria, Amino Acid Sequence, Binding Sites, Coenzymes, Flavonoids, Gene Expression Profiling, Gene Expression Regulation, Bacterial, Genome, Bacterial, molecular biology, Molecular Sequence Data, Molecular Structure, Mycobacterium tuberculosis, Phylogeny, Protein Conformation, Riboflavin}, author = {J. Selengut and Haft, Daniel H.} } @article {49778, title = {Unexpected abundance of coenzyme F(420)-dependent enzymes in Mycobacterium tuberculosis and other actinobacteria.}, journal = {J Bacteriol}, volume = {192}, year = {2010}, month = {2010 Nov}, pages = {5788-98}, abstract = {

Regimens targeting Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), require long courses of treatment and a combination of three or more drugs. An increase in drug-resistant strains of M. tuberculosis demonstrates the need for additional TB-specific drugs. A notable feature of M. tuberculosis is coenzyme F(420), which is distributed sporadically and sparsely among prokaryotes. This distribution allows for comparative genomics-based investigations. Phylogenetic profiling (comparison of differential gene content) based on F(420) biosynthesis nominated many actinobacterial proteins as candidate F(420)-dependent enzymes. Three such families dominated the results: the luciferase-like monooxygenase (LLM), pyridoxamine 5{\textquoteright}-phosphate oxidase (PPOX), and deazaflavin-dependent nitroreductase (DDN) families. The DDN family was determined to be limited to F(420)-producing species. The LLM and PPOX families were observed in F(420)-producing species as well as species lacking F(420) but were particularly numerous in many actinobacterial species, including M. tuberculosis. Partitioning the LLM and PPOX families based on an organism{\textquoteright}s ability to make F(420) allowed the application of the SIMBAL (sites inferred by metabolic background assertion labeling) profiling method to identify F(420)-correlated subsequences. These regions were found to correspond to flavonoid cofactor binding sites. Significantly, these results showed that M. tuberculosis carries at least 28 separate F(420)-dependent enzymes, most of unknown function, and a paucity of flavin mononucleotide (FMN)-dependent proteins in these families. While prevalent in mycobacteria, markers of F(420) biosynthesis appeared to be absent from the normal human gut flora. These findings suggest that M. tuberculosis relies heavily on coenzyme F(420) for its redox reactions. This dependence and the cofactor{\textquoteright}s rarity may make F(420)-related proteins promising drug targets.

}, keywords = {Actinobacteria, Amino Acid Sequence, Binding Sites, Coenzymes, Flavonoids, Gene Expression Profiling, Gene Expression Regulation, Bacterial, Genome, Bacterial, molecular biology, Molecular Sequence Data, Molecular Structure, Mycobacterium tuberculosis, Phylogeny, Protein Conformation, Riboflavin}, issn = {1098-5530}, doi = {10.1128/JB.00425-10}, author = {Selengut, Jeremy D and Haft, Daniel H} } @article {38379, title = {Microbial oceanography in a sea of opportunity}, journal = {NatureNature}, volume = {459}, year = {2009}, type = {10.1038/nature08056}, abstract = {Plankton use solar energy to drive the nutrient cycles that make the planet habitable for larger organisms. We can now explore the diversity and functions of plankton using genomics, revealing the gene repertoires associated with survival in the oceans. Such studies will help us to appreciate the sensitivity of ocean systems and of the ocean{\textquoteright}s response to climate change, improving the predictive power of climate models.}, keywords = {Astronomy, astrophysics, Biochemistry, Bioinformatics, Biology, biotechnology, cancer, cell cycle, cell signalling, climate change, Computational Biology, development, developmental biology, DNA, drug discovery, earth science, ecology, environmental science, Evolution, evolutionary biology, functional genomics, Genetics, Genomics, geophysics, immunology, interdisciplinary science, life, marine biology, materials science, medical research, medicine, metabolomics, molecular biology, molecular interactions, nanotechnology, Nature, neurobiology, neuroscience, palaeobiology, pharmacology, Physics, proteomics, quantum physics, RNA, Science, science news, science policy, signal transduction, structural biology, systems biology, transcriptomics}, isbn = {0028-0836}, author = {Bowler, Chris and Karl, David M. and Rita R. Colwell} } @proceedings {38502, title = {A SIMD solution to the sequence comparison problem on the MGAP}, year = {1994}, month = {1994}, publisher = {IEEE}, type = {10.1109/ASAP.1994.331791}, abstract = {Molecular biologists frequently compare an unknown biosequence with a set of other known biosequences to find the sequence which is maximally similar, with the hope that what is true of one sequence, either physically or functionally, could be true of its analogue. Even though efficient dynamic programming algorithms exist for the problem, when the size of the database is large, the time required is quite long, even for moderate length sequences. In this paper, we present an efficient pipelined SIMD solution to the sequence alignment problem on the Micro-Grain Array Processor (MGAP), a fine-grained massively parallel array of processors with nearest-neighbor connections. The algorithm compares K sequences of length O(M) with the actual sequence of length N, in O(M+N+K) time with O(MN) processors, which is AT-optimal. The implementation on the MGAP computes at the rate of about 0.1 million comparisons per second for sequences of length 128}, keywords = {AT-optimal algorithm, Biological information theory, biology computing, biosequence comparison problem, computational complexity, Computer science, Costs, database size, Databases, DNA computing, dynamic programming, dynamic programming algorithms, fine-grained massively parallel processor array, Genetics, Heuristic algorithms, maximally similar sequence, MGAP parallel computer, Micro-Grain Array Processor, Military computing, molecular biology, molecular biophysics, Nearest neighbor searches, nearest-neighbor connections, Parallel algorithms, pipeline processing, pipelined SIMD solution, sequence alignment problem, sequences}, isbn = {0-8186-6517-3}, author = {Borah, M. and Bajwa, R. S. and Sridhar Hannenhalli and Irwin, M. J.} }