@article {49602, title = {Epiviz: interactive visual analytics for functional genomics data.}, volume = {11}, year = {2014}, month = {2014 Sep}, pages = {938-40}, abstract = {

Visualization is an integral aspect of genomics data analysis. Algorithmic-statistical analysis and interactive visualization are most effective when used iteratively. Epiviz (http://epiviz.cbcb.umd.edu/), a web-based genome browser, and the Epivizr Bioconductor package allow interactive, extensible and reproducible visualization within a state-of-the-art data-analysis platform.

}, keywords = {algorithms, Chromosome mapping, Data Mining, database management systems, Databases, Genetic, Genomics, Internet, software, User-Computer Interface}, issn = {1548-7105}, doi = {10.1038/nmeth.3038}, author = {Chelaru, Florin and Smith, Llewellyn and Goldstein, Naomi and Bravo, H{\'e}ctor Corrada} } @article {49535, title = {Genomic analysis of sequence-dependent DNA curvature in Leishmania.}, volume = {8}, year = {2013}, month = {2013}, pages = {e63068}, abstract = {

Leishmania major is a flagellated protozoan parasite of medical importance. Like other members of the Trypanosomatidae family, it possesses unique mechanisms of gene expression such as constitutive polycistronic transcription of directional gene clusters, gene amplification, mRNA trans-splicing, and extensive editing of mitochondrial transcripts. The molecular signals underlying most of these processes remain under investigation. In order to investigate the role of DNA secondary structure signals in gene expression, we carried out a genome-wide in silico analysis of the intrinsic DNA curvature. The L. major genome revealed a lower frequency of high intrinsic curvature regions as well as inter- and intra- chromosomal distribution heterogeneity, when compared to prokaryotic and eukaryotic organisms. Using a novel method aimed at detecting region-integrated intrinsic curvature (RIIC), high DNA curvature was found to be associated with regions implicated in transcription initiation. Those include divergent strand-switch regions between directional gene clusters and regions linked to markers of active transcription initiation such as acetylated H3 histone, TRF4 and SNAP50. These findings suggest a role for DNA curvature in transcription initiation in Leishmania supporting the relevance of DNA secondary structures signals.

}, keywords = {Chromosome mapping, Comparative Genomic Hybridization, Computational Biology, DNA, Protozoan, Genome, Protozoan, Genomics, HUMANS, Leishmania, Nucleic Acid Conformation}, issn = {1932-6203}, doi = {10.1371/journal.pone.0063068}, author = {Smircich, Pablo and Forteza, Diego and El-Sayed, Najib M and Garat, Beatriz} } @article {38383, title = {The minimum information about a genome sequence (MIGS) specification}, journal = {Nature biotechnologyNature biotechnology}, volume = {26}, year = {2008}, note = {http://www.ncbi.nlm.nih.gov/pubmed/18464787?dopt=Abstract}, type = {10.1038/nbt1360}, abstract = {With the quantity of genomic data increasing at an exponential rate, it is imperative that these data be captured electronically, in a standard format. Standardization activities must proceed within the auspices of open-access and international working bodies. To tackle the issues surrounding the development of better descriptions of genomic investigations, we have formed the Genomic Standards Consortium (GSC). Here, we introduce the minimum information about a genome sequence (MIGS) specification with the intent of promoting participation in its development and discussing the resources that will be required to develop improved mechanisms of metadata capture and exchange. As part of its wider goals, the GSC also supports improving the {\textquoteright}transparency{\textquoteright} of the information contained in existing genomic databases.}, keywords = {Chromosome mapping, Databases, Factual, information dissemination, Information Storage and Retrieval, Information Theory, Internationality}, author = {Field, Dawn and Garrity, George and Gray, Tanya and Morrison, Norman and J. Selengut and Sterk, Peter and Tatusova, Tatiana and Thomson, Nicholas and Allen, Michael J. and Angiuoli, Samuel V. and Ashburner, Michael and Axelrod, Nelson and Baldauf, Sandra and Ballard, Stuart and Boore, Jeffrey and Cochrane, Guy and Cole, James and Dawyndt, Peter and De Vos, Paul and DePamphilis, Claude and Edwards, Robert and Faruque, Nadeem and Feldman, Robert and Gilbert, Jack and Gilna, Paul and Gl{\"o}ckner, Frank Oliver and Goldstein, Philip and Guralnick, Robert and Haft, Dan and Hancock, David and Hermjakob, Henning and Hertz-Fowler, Christiane and Hugenholtz, Phil and Joint, Ian and Kagan, Leonid and Kane, Matthew and Kennedy, Jessie and Kowalchuk, George and Kottmann, Renzo and Kolker, Eugene and Kravitz, Saul and Kyrpides, Nikos and Leebens-Mack, Jim and Lewis, Suzanna E. and Li, Kelvin and Lister, Allyson L. and Lord, Phillip and Maltsev, Natalia and Markowitz, Victor and Martiny, Jennifer and Methe, Barbara and Mizrachi, Ilene and Moxon, Richard and Nelson, Karen and Parkhill, Julian and Proctor, Lita and White, Owen and Sansone, Susanna-Assunta and Spiers, Andrew and Stevens, Robert and Swift, Paul and Taylor, Chris and Tateno, Yoshio and Tett, Adrian and Turner, Sarah and Ussery, David and Vaughan, Bob and Ward, Naomi and Whetzel, Trish and San Gil, Ingio and Wilson, Gareth and Wipat, Anil} } @article {38296, title = {Genome sequence and identification of candidate vaccine antigens from the animal pathogen Dichelobacter nodosus}, journal = {Nature biotechnologyNature biotechnology}, volume = {25}, year = {2007}, note = {http://www.ncbi.nlm.nih.gov/pubmed/17468768?dopt=Abstract}, type = {10.1038/nbt1302}, abstract = {Dichelobacter nodosus causes ovine footrot, a disease that leads to severe economic losses in the wool and meat industries. We sequenced its 1.4-Mb genome, the smallest known genome of an anaerobe. It differs markedly from small genomes of intracellular bacteria, retaining greater biosynthetic capabilities and lacking any evidence of extensive ongoing genome reduction. Comparative genomic microarray studies and bioinformatic analysis suggested that, despite its small size, almost 20\% of the genome is derived from lateral gene transfer. Most of these regions seem to be associated with virulence. Metabolic reconstruction indicated unsuspected capabilities, including carbohydrate utilization, electron transfer and several aerobic pathways. Global transcriptional profiling and bioinformatic analysis enabled the prediction of virulence factors and cell surface proteins. Screening of these proteins against ovine antisera identified eight immunogenic proteins that are candidate antigens for a cross-protective vaccine.}, keywords = {Animals, Antigens, Chromosome mapping, Dichelobacter nodosus, Foot Rot, Genome, Bacterial, Sequence Analysis, DNA}, author = {Myers, Garry S. A. and Parker, Dane and Al-Hasani, Keith and Kennan, Ruth M. and Seemann, Torsten and Ren, Qinghu and Badger, Jonathan H. and J. Selengut and DeBoy, Robert T. and Tettelin, Herv{\'e} and Boyce, John D. and McCarl, Victoria P. and Han, Xiaoyan and Nelson, William C. and Madupu, Ramana and Mohamoud, Yasmin and Holley, Tara and Fedorova, Nadia and Khouri, Hoda and Bottomley, Steven P. and Whittington, Richard J. and Adler, Ben and Songer, J. Glenn and Rood, Julian I. and Paulsen, Ian T.} } @article {49782, title = {Genome sequence and identification of candidate vaccine antigens from the animal pathogen Dichelobacter nodosus.}, journal = {Nat Biotechnol}, volume = {25}, year = {2007}, month = {2007 May}, pages = {569-75}, abstract = {

Dichelobacter nodosus causes ovine footrot, a disease that leads to severe economic losses in the wool and meat industries. We sequenced its 1.4-Mb genome, the smallest known genome of an anaerobe. It differs markedly from small genomes of intracellular bacteria, retaining greater biosynthetic capabilities and lacking any evidence of extensive ongoing genome reduction. Comparative genomic microarray studies and bioinformatic analysis suggested that, despite its small size, almost 20\% of the genome is derived from lateral gene transfer. Most of these regions seem to be associated with virulence. Metabolic reconstruction indicated unsuspected capabilities, including carbohydrate utilization, electron transfer and several aerobic pathways. Global transcriptional profiling and bioinformatic analysis enabled the prediction of virulence factors and cell surface proteins. Screening of these proteins against ovine antisera identified eight immunogenic proteins that are candidate antigens for a cross-protective vaccine.

}, keywords = {Animals, Antigens, Chromosome mapping, Dichelobacter nodosus, Foot Rot, Genome, Bacterial, Sequence Analysis, DNA}, issn = {1087-0156}, doi = {10.1038/nbt1302}, author = {Myers, Garry S A and Parker, Dane and Al-Hasani, Keith and Kennan, Ruth M and Seemann, Torsten and Ren, Qinghu and Badger, Jonathan H and Selengut, Jeremy D and DeBoy, Robert T and Tettelin, Herv{\'e} and Boyce, John D and McCarl, Victoria P and Han, Xiaoyan and Nelson, William C and Madupu, Ramana and Mohamoud, Yasmin and Holley, Tara and Fedorova, Nadia and Khouri, Hoda and Bottomley, Steven P and Whittington, Richard J and Adler, Ben and Songer, J Glenn and Rood, Julian I and Paulsen, Ian T} } @article {49679, title = {SplicePort--an interactive splice-site analysis tool.}, journal = {Nucleic Acids Res}, volume = {35}, year = {2007}, month = {2007 Jul}, pages = {W285-91}, abstract = {

SplicePort is a web-based tool for splice-site analysis that allows the user to make splice-site predictions for submitted sequences. In addition, the user can also browse the rich catalog of features that underlies these predictions, and which we have found capable of providing high classification accuracy on human splice sites. Feature selection is optimized for human splice sites, but the selected features are likely to be predictive for other mammals as well. With our interactive feature browsing and visualization tool, the user can view and explore subsets of features used in splice-site prediction (either the features that account for the classification of a specific input sequence or the complete collection of features). Selected feature sets can be searched, ranked or displayed easily. The user can group features into clusters and frequency plot WebLogos can be generated for each cluster. The user can browse the identified clusters and their contributing elements, looking for new interesting signals, or can validate previously observed signals. The SplicePort web server can be accessed at http://www.cs.umd.edu/projects/SplicePort and http://www.spliceport.org.

}, keywords = {Base Sequence, Chromosome mapping, Computational Biology, Computer simulation, DNA, Genome, HUMANS, Internet, Models, Genetic, Molecular Sequence Data, Pattern Recognition, Automated, RNA Splice Sites, sequence alignment, Sequence Analysis, DNA, User-Computer Interface}, issn = {1362-4962}, doi = {10.1093/nar/gkm407}, author = {Dogan, Rezarta Islamaj and Getoor, Lise and Wilbur, W John and Mount, Stephen M} } @article {38294, title = {Genome Properties: a system for the investigation of prokaryotic genetic content for microbiology, genome annotation and comparative genomics}, journal = {Bioinformatics (Oxford, England)Bioinformatics (Oxford, England)}, volume = {21}, year = {2005}, note = {http://www.ncbi.nlm.nih.gov/pubmed/15347579?dopt=Abstract}, type = {10.1093/bioinformatics/bti015}, abstract = {MOTIVATION: The presence or absence of metabolic pathways and structures provide a context that makes protein annotation far more reliable. Compiling such information across microbial genomes improves the functional classification of proteins and provides a valuable resource for comparative genomics. RESULTS: We have created a Genome Properties system to present key aspects of prokaryotic biology using standardized computational methods and controlled vocabularies. Properties reflect gene content, phenotype, phylogeny and computational analyses. The results of searches using hidden Markov models allow many properties to be deduced automatically, especially for families of proteins (equivalogs) conserved in function since their last common ancestor. Additional properties are derived from curation, published reports and other forms of evidence. Genome Properties system was applied to 156 complete prokaryotic genomes, and is easily mined to find differences between species, correlations between metabolic features and families of uncharacterized proteins, or relationships among properties. AVAILABILITY: Genome Properties can be found at http://www.tigr.org/Genome_Properties SUPPLEMENTARY INFORMATION: http://www.tigr.org/tigr-scripts/CMR2/genome_properties_references.spl.}, keywords = {Chromosome mapping, database management systems, Databases, Genetic, documentation, Gene Expression Profiling, Gene Expression Regulation, Genomics, Information Storage and Retrieval, Microbiological Techniques, natural language processing, Prokaryotic Cells, Proteome, signal transduction, software, User-Computer Interface, Vocabulary, Controlled}, author = {Haft, Daniel H. and J. Selengut and Brinkac, Lauren M. and Zafar, Nikhat and White, Owen} } @article {38480, title = {Schistosoma mansoni genome project: an update}, journal = {Parasitology InternationalParasitology International}, volume = {53}, year = {2004}, type = {16/j.parint.2004.01.009}, abstract = {A schistosome genome project was initiated by the World Health Organization in 1994 with the notion that the best prospects for identifying new targets for drugs, vaccines, and diagnostic development lie in schistosome gene discovery, development of chromosome maps, whole genome sequencing and genome analysis. Schistosoma mansoni has a haploid genome of 270 Mb contained on 8 pairs of chromosomes. It is estimated that the S. mansoni genome contains between 15~000 and 25~000 genes. There are approximately 16~689 ESTs obtained from diverse libraries representing different developmental stages of S. mansoni, deposited in the NCBI EST database. More than half of the deposited sequences correspond to genes of unknown function. Approximately 40-50\% of the sequences form unique clusters, suggesting that approximately 20-25\% of the total schistosome genes have been discovered. Efforts to develop low resolution chromosome maps are in progress. There is a genome sequencing program underway that will provide 3X sequence coverage of the S. mansoni genome that will result in approximately 95\% gene discovery. The genomics era has provided the resources to usher in the era of functional genomics that will involve microarrays to focus on specific metabolic pathways, proteomics to identify relevant proteins and protein-protein interactions to understand critical parasite pathways. Functional genomics is expected to accelerate the development of control and treatment strategies for schistosomiasis.}, keywords = {Chromosome mapping, Gene discovery, Genomics, Schistosoma mansoni}, isbn = {1383-5769}, author = {LoVerde, Philip T. and Hirai, Hirohisa and Merrick, Joseph M. and Lee, Norman H. and Najib M. El-Sayed} } @article {49633, title = {The sequence and analysis of Trypanosoma brucei chromosome II.}, journal = {Nucleic Acids Res}, volume = {31}, year = {2003}, month = {2003 Aug 15}, pages = {4856-63}, abstract = {

We report here the sequence of chromosome II from Trypanosoma brucei, the causative agent of African sleeping sickness. The 1.2-Mb pairs encode about 470 predicted genes organised in 17 directional clusters on either strand, the largest cluster of which has 92 genes lined up over a 284-kb region. An analysis of the GC skew reveals strand compositional asymmetries that coincide with the distribution of protein-coding genes, suggesting these asymmetries may be the result of transcription-coupled repair on coding versus non-coding strand. A 5-cM genetic map of the chromosome reveals recombinational {\textquoteright}hot{\textquoteright} and {\textquoteright}cold{\textquoteright} regions, the latter of which is predicted to include the putative centromere. One end of the chromosome consists of a 250-kb region almost exclusively composed of RHS (pseudo)genes that belong to a newly characterised multigene family containing a hot spot of insertion for retroelements. Interspersed with the RHS genes are a few copies of truncated RNA polymerase pseudogenes as well as expression site associated (pseudo)genes (ESAGs) 3 and 4, and 76 bp repeats. These features are reminiscent of a vestigial variant surface glycoprotein (VSG) gene expression site. The other end of the chromosome contains a 30-kb array of VSG genes, the majority of which are pseudogenes, suggesting that this region may be a site for modular de novo construction of VSG gene diversity during transposition/gene conversion events.

}, keywords = {Animals, Antigens, Protozoan, Chromosome mapping, Chromosomes, DNA, Protozoan, Gene Duplication, Genes, Protozoan, Molecular Sequence Data, Pseudogenes, Recombination, Genetic, Sequence Analysis, DNA, Trypanosoma brucei brucei}, issn = {1362-4962}, author = {el-Sayed, Najib M A and Ghedin, Elodie and Song, Jinming and MacLeod, Annette and Bringaud, Frederic and Larkin, Christopher and Wanless, David and Peterson, Jeremy and Hou, Lihua and Taylor, Sonya and Tweedie, Alison and Biteau, Nicolas and Khalak, Hanif G and Lin, Xiaoying and Mason, Tanya and Hannick, Linda and Caler, Elisabet and Blandin, Ga{\"e}lle and Bartholomeu, Daniella and Simpson, Anjana J and Kaul, Samir and Zhao, Hong and Pai, Grace and Van Aken, Susan and Utterback, Teresa and Haas, Brian and Koo, Hean L and Umayam, Lowell and Suh, Bernard and Gerrard, Caroline and Leech, Vanessa and Qi, Rong and Zhou, Shiguo and Schwartz, David and Feldblyum, Tamara and Salzberg, Steven and Tait, Andrew and Turner, C Michael R and Ullu, Elisabetta and White, Owen and Melville, Sara and Adams, Mark D and Fraser, Claire M and Donelson, John E} }