@article {49635, title = {Gene synteny and evolution of genome architecture in trypanosomatids.}, journal = {Mol Biochem Parasitol}, volume = {134}, year = {2004}, month = {2004 Apr}, pages = {183-91}, abstract = {

The trypanosomatid protozoa Trypanosoma brucei, Trypanosoma cruzi and Leishmania major are related human pathogens that cause markedly distinct diseases. Using information from genome sequencing projects currently underway, we have compared the sequences of large chromosomal fragments from each species. Despite high levels of divergence at the sequence level, these three species exhibit a striking conservation of gene order, suggesting that selection has maintained gene order among the trypanosomatids over hundreds of millions of years of evolution. The few sites of genome rearrangement between these species are marked by the presence of retrotransposon-like elements, suggesting that retrotransposons may have played an important role in shaping trypanosomatid genome organization. A degenerate retroelement was identified in L. major by examining the regions near breakage points of the synteny. This is the first such element found in L. major suggesting that retroelements were found in the common ancestor of all three species.

}, keywords = {Animals, Computational Biology, Evolution, Molecular, Gene Order, Genome, Protozoan, Genomics, Leishmania major, Multigene Family, Recombination, Genetic, Retroelements, Selection, Genetic, Synteny, Trypanosoma brucei brucei, Trypanosoma cruzi, Trypanosomatina}, issn = {0166-6851}, doi = {10.1016/j.molbiopara.2003.11.012}, author = {Ghedin, Elodie and Bringaud, Frederic and Peterson, Jeremy and Myler, Peter and Berriman, Matthew and Ivens, Alasdair and Andersson, Bj{\"o}rn and Bontempi, Esteban and Eisen, Jonathan and Angiuoli, Sam and Wanless, David and Von Arx, Anna and Murphy, Lee and Lennard, Nicola and Salzberg, Steven and Adams, Mark D and White, Owen and Hall, Neil and Stuart, Kenneth and Fraser, Claire M and el-Sayed, Najib M A} } @article {49633, title = {The sequence and analysis of Trypanosoma brucei chromosome II.}, journal = {Nucleic Acids Res}, volume = {31}, year = {2003}, month = {2003 Aug 15}, pages = {4856-63}, abstract = {

We report here the sequence of chromosome II from Trypanosoma brucei, the causative agent of African sleeping sickness. The 1.2-Mb pairs encode about 470 predicted genes organised in 17 directional clusters on either strand, the largest cluster of which has 92 genes lined up over a 284-kb region. An analysis of the GC skew reveals strand compositional asymmetries that coincide with the distribution of protein-coding genes, suggesting these asymmetries may be the result of transcription-coupled repair on coding versus non-coding strand. A 5-cM genetic map of the chromosome reveals recombinational {\textquoteright}hot{\textquoteright} and {\textquoteright}cold{\textquoteright} regions, the latter of which is predicted to include the putative centromere. One end of the chromosome consists of a 250-kb region almost exclusively composed of RHS (pseudo)genes that belong to a newly characterised multigene family containing a hot spot of insertion for retroelements. Interspersed with the RHS genes are a few copies of truncated RNA polymerase pseudogenes as well as expression site associated (pseudo)genes (ESAGs) 3 and 4, and 76 bp repeats. These features are reminiscent of a vestigial variant surface glycoprotein (VSG) gene expression site. The other end of the chromosome contains a 30-kb array of VSG genes, the majority of which are pseudogenes, suggesting that this region may be a site for modular de novo construction of VSG gene diversity during transposition/gene conversion events.

}, keywords = {Animals, Antigens, Protozoan, Chromosome mapping, Chromosomes, DNA, Protozoan, Gene Duplication, Genes, Protozoan, Molecular Sequence Data, Pseudogenes, Recombination, Genetic, Sequence Analysis, DNA, Trypanosoma brucei brucei}, issn = {1362-4962}, author = {el-Sayed, Najib M A and Ghedin, Elodie and Song, Jinming and MacLeod, Annette and Bringaud, Frederic and Larkin, Christopher and Wanless, David and Peterson, Jeremy and Hou, Lihua and Taylor, Sonya and Tweedie, Alison and Biteau, Nicolas and Khalak, Hanif G and Lin, Xiaoying and Mason, Tanya and Hannick, Linda and Caler, Elisabet and Blandin, Ga{\"e}lle and Bartholomeu, Daniella and Simpson, Anjana J and Kaul, Samir and Zhao, Hong and Pai, Grace and Van Aken, Susan and Utterback, Teresa and Haas, Brian and Koo, Hean L and Umayam, Lowell and Suh, Bernard and Gerrard, Caroline and Leech, Vanessa and Qi, Rong and Zhou, Shiguo and Schwartz, David and Feldblyum, Tamara and Salzberg, Steven and Tait, Andrew and Turner, C Michael R and Ullu, Elisabetta and White, Owen and Melville, Sara and Adams, Mark D and Fraser, Claire M and Donelson, John E} } @article {38304, title = {Genome sequence of the human malaria parasite Plasmodium falciparum}, journal = {NatureNature}, volume = {419}, year = {2002}, note = {http://www.ncbi.nlm.nih.gov/pubmed/12368864?dopt=Abstract}, type = {10.1038/nature01097}, abstract = {The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host-parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.}, keywords = {Animals, Chromosome Structures, DNA Repair, DNA Replication, DNA, Protozoan, Evolution, Molecular, Genome, Protozoan, HUMANS, Malaria Vaccines, Malaria, Falciparum, Membrane Transport Proteins, Molecular Sequence Data, Plasmodium falciparum, Plastids, Proteome, Protozoan Proteins, Recombination, Genetic, Sequence Analysis, DNA}, author = {Gardner, Malcolm J. and Hall, Neil and Fung, Eula and White, Owen and Berriman, Matthew and Hyman, Richard W. and Carlton, Jane M. and Pain, Arnab and Nelson, Karen E. and Bowman, Sharen and Paulsen, Ian T. and James, Keith and Eisen, Jonathan A. and Rutherford, Kim and Salzberg, Steven L. and Craig, Alister and Kyes, Sue and Chan, Man-Suen and Nene, Vishvanath and Shallom, Shamira J. and Suh, Bernard and Peterson, Jeremy and Angiuoli, Sam and Pertea, Mihaela and Allen, Jonathan and J. Selengut and Haft, Daniel and Mather, Michael W. and Vaidya, Akhil B. and Martin, David M. A. and Fairlamb, Alan H. and Fraunholz, Martin J. and Roos, David S. and Ralph, Stuart A. and McFadden, Geoffrey I. and Cummings, Leda M. and Subramanian, G. Mani and Mungall, Chris and Venter, J. Craig and Carucci, Daniel J. and Hoffman, Stephen L. and Newbold, Chris and Davis, Ronald W. and Fraser, Claire M. and Barrell, Bart} } @article {49699, title = {P element-mediated in vivo deletion analysis of white-apricot: deletions between direct repeats are strongly favored.}, journal = {Genetics}, volume = {136}, year = {1994}, month = {1994 Mar}, pages = {1001-11}, abstract = {

We have isolated and characterized deletions arising within a P transposon, P[hswa], in the presence of P transposase. P[hswa] carries white-apricot (wa) sequences, including a complete copia element, under the control of an hsp70 promoter, and resembles the original wa allele in eye color phenotype. In the presence of P transposase, P[hswa] shows a high overall rate (approximately 3\%) of germline mutations that result in increased eye pigmentation. Of 234 derivatives of P[hswa] with greatly increased eye pigmentation, at least 205 carried deletions within copia. Of these, 201 were precise deletions between the directly repeated 276-nucleotide copia long terminal repeats (LTRs), and four were unique deletions. High rates of transposase-induced precise deletion were observed within another P transposon carrying unrelated 599 nucleotide repeats (yeast 2 mu FLP; recombinase target sites) separated by 5.7 kb. Our observation that P element-mediated deletion formation occurs preferentially between direct repeats suggests general methods for controlling deletion formation.

}, keywords = {Alleles, Animals, Animals, Genetically Modified, Base Sequence, Crosses, Genetic, DNA, DNA Transposable Elements, Drosophila, Eye Color, Female, Genes, Insect, Male, Molecular Sequence Data, Nucleotidyltransferases, PHENOTYPE, Recombination, Genetic, Repetitive Sequences, Nucleic Acid, Sequence Deletion, Transformation, Genetic, Transposases}, issn = {0016-6731}, author = {Kurkulos, M and Weinberg, J M and Roy, D and Mount, S M} } @article {49715, title = {Pseudogenes for human small nuclear RNA U3 appear to arise by integration of self-primed reverse transcripts of the RNA into new chromosomal sites.}, journal = {Cell}, volume = {32}, year = {1983}, month = {1983 Feb}, pages = {461-72}, abstract = {

We find that both human and rat U3 snRNA can function as self-priming templates for AMV reverse transcriptase in vitro. The 74 base cDNA is primed by the 3{\textquoteright} end of intact U3 snRNA, and spans the characteristically truncated 69 or 70 base U3 sequence found in four different human U3 pseudogenes. The ability of human and rat U3 snRNA to self-prime is consistent with a U3 secondary structure model derived by a comparison between rat U3 snRNA and the homologous D2 snRNA from Dictyostelium discoideum. We propose that U3 pseudogenes are generated in vivo by integration of a self-primed cDNA copy of U3 snRNA at new chromosomal sites. We also consider the possibility that the same cDNA mediates gene conversion at the 5{\textquoteright} end of bona fide U3 genes where, over the entire region spanned by the U3 cDNA, the two rat U3 sequence variants U3A and U3B are identical.

}, keywords = {Animals, Base Sequence, DNA, genes, HUMANS, Nucleic Acid Conformation, Rats, Recombination, Genetic, Repetitive Sequences, Nucleic Acid, RNA, RNA, Small Nuclear, RNA-Directed DNA Polymerase, Templates, Genetic, Transcription, Genetic}, issn = {0092-8674}, author = {Bernstein, L B and Mount, S M and Weiner, A M} }