@article {49578, title = {The effects of telomere shortening on cancer cells: a network model of proteomic and microRNA analysis.}, volume = {105}, year = {2015}, month = {2015 Jan}, pages = {5-16}, abstract = {

Previously, we have shown that shortening of telomeres by telomerase inhibition sensitized cancer cells to cisplatinum, slowed their migration, increased DNA damage and impaired DNA repair. The mechanism behind these effects is not fully characterized. Its clarification could facilitate novel therapeutics development and may obviate the time consuming process of telomere shortening achieved by telomerase inhibition. Here we aimed to decipher the microRNA and proteomic profiling of cancer cells with shortened telomeres and identify the key mediators in telomere shortening-induced damage to those cells. Of 870 identified proteins, 98 were differentially expressed in shortened-telomere cells. 47 microRNAs were differentially expressed in these cells; some are implicated in growth arrest or act as oncogene repressors. The obtained data was used for a network construction, which provided us with nodal candidates that may mediate the shortened-telomere dependent features. These proteins{\textquoteright} expression was experimentally validated, supporting their potential central role in this system.

}, keywords = {Gene Expression Regulation, Neoplastic, Gene Regulatory Networks, HUMANS, MicroRNAs, Neoplasms, Oligonucleotides, Proteome, proteomics, Telomere Shortening, Tumor Cells, Cultured}, issn = {1089-8646}, doi = {10.1016/j.ygeno.2014.10.013}, author = {Uziel, O and Yosef, N and Sharan, R and Ruppin, E and Kupiec, M and Kushnir, M and Beery, E and Cohen-Diker, T and Nordenberg, J and Lahav, M} } @article {38583, title = {Enhancer networks revealed by correlated DNAse hypersensitivity states of enhancers}, journal = {Nucleic Acids ResNucleic Acids ResNucleic Acids Res}, volume = {41}, number = {14}, year = {2013}, note = {Malin, Justin
Aniba, Mohamed Radhouane
Hannenhalli, Sridhar
eng
R01 GM100335/GM/NIGMS NIH HHS/
R01GM100335/GM/NIGMS NIH HHS/
Research Support, N.I.H., Extramural
England
2013/05/24 06:00
Nucleic Acids Res. 2013 Aug;41(14):6828-38. doi: 10.1093/nar/gkt374. Epub 2013 May 21.}, month = {Aug}, pages = {6828-38}, abstract = {Mammalian gene expression is often regulated by distal enhancers. However, little is known about higher order functional organization of enhancers. Using approximately 100 K P300-bound regions as candidate enhancers, we investigated their correlated activity across 72 cell types based on DNAse hypersensitivity. We found widespread correlated activity between enhancers, which decreases with increasing inter-enhancer genomic distance. We found that correlated enhancers tend to share common transcription factor (TF) binding motifs, and several chromatin modification enzymes preferentially interact with these TFs. Presence of shared motifs in enhancer pairs can predict correlated activity with 73\% accuracy. Also, genes near correlated enhancers exhibit correlated expression and share common function. Correlated enhancers tend to be spatially proximal. Interestingly, weak enhancers tend to correlate with significantly greater numbers of other enhancers relative to strong enhancers. Furthermore, strong/weak enhancers preferentially correlate with strong/weak enhancers, respectively. We constructed enhancer networks based on shared motif and correlated activity and show significant functional enrichment in their putative target gene clusters. Overall, our analyses show extensive correlated activity among enhancers and reveal clusters of enhancers whose activities are coordinately regulated by multiple potential mechanisms involving shared TF binding, chromatin modifying enzymes and 3D chromatin structure, which ultimately co-regulate functionally linked genes.}, keywords = {*Deoxyribonucleases, *Enhancer Elements, Genetic, Chromatin/chemistry, Gene expression, Gene Regulatory Networks, HUMANS, Transcription Factors/metabolism}, isbn = {1362-4962 (Electronic)
0305-1048 (Linking)}, author = {Malin, J. and Aniba, M. R. and Sridhar Hannenhalli} }