CMSC 451: SAT, Coloring, Hamiltonian Cycle, TSP

Slides By: Carl Kingsford

Department of Computer Science
University of Maryland, College Park

Based on Sects. 8.2, 8.7, 8.5 of Algorithm Design by Kleinberg & Tardos.
Boolean Formulas

Variables: x_1, x_2, x_3 (can be either true or false)

Terms: t_1, t_2, \ldots, t_ℓ: t_j is either x_i or $\overline{x_i}$ (meaning either x_i or not x_i).

Clauses: $t_1 \lor t_2 \lor \cdots \lor t_\ell$ (\lor stands for “OR”)
A clause is true if any term in it is true.

Example 1: $(x_1 \lor \overline{x_2}), (\overline{x_1} \lor x_3), (x_2 \lor \overline{v_3})$

Example 2: $(x_1 \lor x_2 \lor \overline{x_3}), (\overline{x_2} \lor x_1)$
Boolean Formulas

Def. A truth assignment is a choice of **true** or **false** for each variable, ie, a function $\nu : X \rightarrow \{\text{true}, \text{false}\}$.

Def. A CNF formula is a conjunction of clauses:

$$C_1 \land C_2, \land \cdots \land C_k$$

Example: $(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_3) \land (x_2 \lor \overline{v_3})$

Def. A truth assignment is a satisfying assignment for such a formula if it makes every clause **true**.
Satisfiability (SAT)

Given a set of clauses C_1, \ldots, C_k over variables $X = \{x_1, \ldots, x_n\}$ is there a satisfying assignment?

Satisfiability (3-SAT)

Given a set of clauses C_1, \ldots, C_k, each of length 3, over variables $X = \{x_1, \ldots, x_n\}$ is there a satisfying assignment?
Cook-Levin Theorem

Theorem (Cook-Levin)

3-SAT is NP-complete.

Proven in early 1970s by Cook. Slightly different proof by Levin independently.

Idea of the proof: encode the workings of a Nondeterministic Turing machine for an instance I of problem $X \in \text{NP}$ as a SAT formula so that the formula is satisfiable if and only if the nondeterministic Turing machine would accept instance I.

We won’t have time to prove this, but it gives us our first hard problem.
Reducing 3-SAT to Independent Set

Thm. 3-SAT \leq_P Independent Set

Proof. Suppose we have an algorithm to solve Independent Set, how can we use it to solve 3-SAT?

To solve 3-SAT:

- you have to choose a term from each clause to set to **true**,
- but you can’t set both x_i and \bar{x}_i to **true**.

How do we do the reduction?
3-SAT \leq_P \text{ Independent Set}

\begin{align*}
(x_1 \lor x_2 \lor \overline{x_3}) & \land (x_2 \lor x_3 \lor \overline{x_4}) & \land (x_1 \lor \overline{x_2} \lor x_4)
\end{align*}

\begin{tikzpicture}
 \node[vertex] at (0,0) (x1) {x_1};
 \node[vertex] at (-2,-2) (x2) {x_2};
 \node[vertex] at (2,-2) (x3) {x_3};
 \node[vertex] at (-4,-4) (x4) {x_4};

 \node[vertex] at (-2,-4) (x5) {$\overline{x_2}$};
 \node[vertex] at (2,-4) (x6) {$\overline{x_3}$};
 \node[vertex] at (-6,-6) (x7) {$\overline{x_4}$};

 \node[vertex] at (-6,-8) (x8) {$\overline{x_2}$};
 \node[vertex] at (6,-8) (x9) {$\overline{x_2}$};

 \draw (x1) -- (x2);
 \draw (x1) -- (x3);
 \draw (x1) -- (x4);
 \draw (x2) -- (x3);
 \draw (x2) -- (x4);
 \draw (x3) -- (x4);
 \draw (x2) -- (x5);
 \draw (x3) -- (x6);
 \draw (x4) -- (x7);
 \draw (x5) -- (x6);
 \draw (x6) -- (x7);
 \draw (x7) -- (x8);
 \draw (x8) -- (x9);
 \draw (x9) -- (x7);
\end{tikzpicture}
Proof

Theorem

This graph has an independent set of size k iff the formula is satisfiable.

Proof. \implies If the formula is satisfiable, there is at least one true literal in each clause. Let S be a set of one such true literal from each clause. $|S| = k$ and no two nodes in S are connected by an edge.

\implies If the graph has an independent set S of size k, we know that it has one node from each “clause triangle.” Set those terms to true. This is possible because no 2 are negations of each other. \blacksquare
Graph Coloring
Graph Coloring Problem

Given a graph G, can you color the nodes with $\leq k$ colors such that the endpoints of every edge are colored differently?

Notation: A k-coloring is a function $f : V \rightarrow \{1, \ldots, k\}$ such that for every edge $\{u, v\}$ we have $f(u) \neq f(v)$.

If such a function exists for a given graph G, then G is k-colorable.
How can we test if a graph has a 2-coloring?
How can we test if a graph has a 2-coloring?

Check if the graph is bipartite.

Unfortunately, for $k \geq 3$, the problem is NP-complete.

Theorem

3-Coloring is NP-complete.
3-Coloring $\in \textbf{NP}$: A valid coloring gives a certificate.

We will show that:

$$3\text{-SAT} \leq_P 3\text{-Coloring}$$

Let $x_1, \ldots, x_n, C_1, \ldots, C_k$ be an instance of 3-SAT.

We show how to use 3-Coloring to solve it.
Reduction from 3-SAT

We construct a graph G that will be 3-colorable iff the 3-SAT instance is satisfiable.

For every variable x_i, create 2 nodes in G, one for x_i and one for \overline{x}_i. Connect these nodes by an edge:

![Graph with nodes and edges]

Create 3 special nodes T, F, and B, joined in a triangle:
Connecting them up

Connect every variable node to B:
Properties:

• Each of x_i and \bar{x}_i must get different colors
• Each must be different than the color of B.
• B, T, and F must get different colors.

Hence, any 3-coloring of this graph defines a valid truth assignment!

Still have to constrain the truth assignments to satisfy the given clauses, however.
Connect Clause \((t_1, t_2, t_3)\) up like this:
Suppose Every Term Was False

What if every term in the clause was assigned the false color?
Connect Clause \((t_1, t_2, t_3)\) up like this:
Suppose there is a 3-coloring.

Top node is colorable iff one of its terms gets the \textbf{true} color.

Suppose there is a 3-coloring.

We get a satisfying assignment by:

- Setting $x_i = \textbf{true}$ iff v_i is colored the same as T

Let C be any clause in the formula. At least 1 of its terms must be true, because if they were all false, we couldn’t complete the coloring (as shown above).
Suppose there is a satisfying assignment.

We get a 3-coloring of G by:

- Coloring T, F, B arbitrarily with 3 different colors
- If $x_i = \text{true}$, color v_i with the same color as T and \bar{v}_i with the color of F.
- If $x_i = \text{false}$, do the opposite.
- Extend this coloring into the clause gadgets.

Hence: the graph is 3-colorable iff the formula it is derived from is satisfiable.
General Proof Strategy

General Strategy for Proving Something is NP-complete:

1. **Must show that** $X \in \text{NP}$. Do this by showing there is an certificate that can be efficiently checked.

2. **Look at some problems that are known to be NP-complete** (there are thousands), and choose one Y that seems “similar” to your problem in some way.

3. **Show that** $Y \leq_P X$.
One strategy for showing that $Y \leq_P X$ often works:

1. Let I_Y be any instance of problem Y.

2. Show how to construct an instance I_X of problem X in polynomial time such that:

 - If $I_Y \in Y$, then $I_X \in X$
 - If $I_X \in X$, then $I_Y \in Y$
Hamiltonian Cycle Problem

Hamiltonian Cycle

Given a directed graph G, is there a cycle that visits every vertex exactly once?

Such a cycle is called a **Hamiltonian cycle**.
Theorem

Hamiltonian Cycle is NP-complete.

Proof. First, HamCycle ∈ NP. Why?

Second, we show 3-SAT ≤_P Hamiltonian Cycle.

Suppose we have a black box to solve Hamiltonian Cycle, how do we solve 3-SAT?

In other words: how do we encode an instance I of 3-SAT as a graph G such that I is satisfiable exactly when G has a Hamiltonian cycle.

Consider an instance I of 3-SAT, with variables x₁, . . . , xₙ and clauses C₁, . . . , Cₖ.
Reduction Idea (very high level):

• Create some graph structure (a “gadget”) that represents the variables

• And some graph structure that represents the clauses

• Hook them up in some way that encodes the formula

• Show that this graph has a Ham. cycle iff the formula is satisfiable.
Direction we travel along this chain represents whether to set the variable to **true** or **false**.

\[x_i \]
Hooking in the Clauses

Add a new node for each clause:

\[C_k \]

Connect it this way if \(x_i \) in \(C_k \)

\[C_j \]

Connect it this way if \(x_i \) in \(C_k \)

Direction we travel along this chain represents whether to set the variable to true or false.
Connecting up the paths
Connecting up the paths
A Hamiltonian path encodes a truth assignment for the variables (depending on which direction each chain is traversed)

For there to be a Hamiltonian cycle, we have to visit every clause node

We can only visit a clause if we satisfy it (by setting one of its terms to true)

Hence, if there is a Hamiltonian cycle, there is a satisfying assignment
Hamiltonian Path

Hamiltonian Path: Does G contain a path that visits every node exactly once?

How could you prove this problem is NP-complete?
Hamiltonian Path: Does G contain a path that visits every node exactly once?

How could you prove this problem is NP-complete?

Reduce Hamiltonian Cycle to Hamiltonian Path.

Given instance of Hamiltonian Cycle G, choose an arbitrary node v and split it into two nodes to get graph G':

$\begin{array}{c}
\text{v} \\
\text{v''} \\
\text{v'}
\end{array}$

Now any Hamiltonian Path must start at v' and end at v''.
Hamiltonian Path

G'' has a Hamiltonian Path $\iff G$ has a Hamiltonian Cycle.

\implies If G'' has a Hamiltonian Path, then the same ordering of nodes (after we glue v' and v'' back together) is a Hamiltonian cycle in G.

\impliedby If G has a Hamiltonian Cycle, then the same ordering of nodes is a Hamiltonian path of G' if we split up v into v' and v''. □

Hence, Hamiltonian Path is NP-complete.
Traveling Salesman Problem

Given n cities, and distances $d(i, j)$ between each pair of cities, does there exist a path of length $\leq k$ that visits each city?

Notes:

- We have a distance between every pair of cities.
- In this version, $d(i, j)$ doesn’t have to equal $d(j, i)$.
- And the distances don’t have to obey the triangle inequality $(d(i, j) \leq d(i, k) + d(k, j)$ for all i, j, k).
TSP large instance

- TSP visiting 24,978 (all) cities in Sweden.
- Solved by David Applegate, Robert Bixby, Vašek Chvátal, William Cook, and Keld Helsgaun
- http://www.tsp.gatech.edu/sweden/index.html
- Lots more cool TSP at http://www.tsp.gatech.edu/
Thm. Traveling Salesman is NP-complete.

TSP seems a lot like Hamiltonian Cycle. We will show that

Hamiltonian Cycle $\leq_P TSP$

To do that:

Given: a graph $G = (V, E)$ that we want to test for a Hamiltonian cycle,

Create: an instance of TSP.
A TSP instance D consists of n cities, and $n(n - 1)$ distances.

Cities We have a city c_i for every node v_i.

Distances Let $d(c_i, c_j) = \begin{cases} 1 & \text{if edge } (v_i, v_j) \in E \\ 2 & \text{otherwise} \end{cases}$
Proof. If G has a Hamiltonian cycle, then this ordering of cities gives a tour of length $\leq n$ in D (only distances of length 1 are used).

Suppose D has a tour of length $\leq n$. The tour length is the sum of n terms, meaning each term must equal 1, and hence cities that are visited consecutively must be connected by an edge in G. □

Also, TSP \in NP: a certificate is simply an ordering of the n cities.
Hence, TSP is NP-complete.

Even TSP restricted to the case when the $d(i,j)$ values come from actual distances on a map is NP-complete.