String Alignment

CMSC423 Fall 2015
Hector Corrada Bravo
Recursive Solution to Longest Path in a Grid

\[s_{i,j} = \max \begin{cases}
 s_{i-1,j} + \text{DOWN}_{i,j} \\
 s_{i,j-1} + \text{RIGHT}_{i,j}
\end{cases} \]
Recursive Solution for Longest Common Subsequence

\[a = a_1 a_2 a_3 a_4 \ldots a_m \]
\[b = b_1 b_2 b_3 b_4 \ldots b_n \]

\[s_{i,j} = \max \left\{ \begin{array}{ll}
 s_{i-1,j} & \text{char in } a \text{ unmatched} \\
 s_{i,j-1} & \text{char in } b \text{ unmatched} \\
 s_{i-1,j-1} + 1, & \text{if } a_i = b_j \text{ match!}
\end{array} \right\} \]

\(s_{i,j} \) is length of LCS of:

prefix of length \(i \) of \(a \)

prefix of length \(j \) of \(b \)
Global Alignment

$s_{i,j}$ is the score of optimally aligning:

prefix of length i of a **prefix** of length j of b
Global Alignment

Generalizing LCS:
- scoring alignments
- gap penalty

\[s_{i,j} = \begin{cases}
 s_{i-1,j} - \sigma & \text{char in } a \text{ unmatched} \\
 s_{i,j-1} - \sigma & \text{char in } b \text{ unmatched} \\
 s_{i-1,j-1} + \text{SCORE}(a_i, b_j), & \text{align!}
\end{cases} \]
Guiding principles of scores in alignments

- Sequence is said to have diverged from a common ancestor through mutations
 - Substitutions
 - Insertions and deletions (gaps)

- Score evolutionarily close alignments higher than those that are not

- That is we compute the **likelihood ratio** of an alignment given the two sequences are related versus not related
Log odds score

- Let X be a random variable representing an alignment
- Let M_1 and M_2 be two probabilistic models for X
- Log odds score $S(X)$

\[S(X) = \log \frac{P(X|M_1)}{P(X|M_2)} \]

- If $S(X) > 0$, X is more likely to come from model M_1
- If $S(X) < 0$, X is more likely to come from model M_2
What are M_1 and M_2 in our sequence alignment problem

- M_1: foreground model, that is the sequences are “related by evolution”.
- M_2: background model, that is the sequences are unrelated

- Need to compute the probability of an alignment X, under the two models M_1 and M_2
- Assume alignments on **protein sequences** with no gaps.
M_1: foreground model

- Assume each pair of aligned positions evolved from a common ancestor.
- Let p_{ab} be the probability of observing a pair $\{a,b\}$.
- Probability of an alignment between x and y is

$$P(x, y|M_1) = \prod_{i=1}^{n} p_{x_i y_i}$$
M_2: background model

- Assume the individual amino acids at a position are independent of the amino acid in another position.
- Let q_a be the probability of amino acid a
- The probability of an n-character alignment of x and y is

$$P(x, y|M_2) = \prod_{i=1}^{n} q_{x_i} \prod_{i=1}^{n} q_{y_i}$$
Computing the log odds ratio to score an alignment

- The score of an alignment is the log odds ratio of the two sequences from M_1 and M_2

\[S = \log \frac{P(x, y|M_1)}{P(x, y|M_2)} \]

\[S = \log \frac{\prod_{i=1}^{n} p_{x_i y_i}}{\prod_{i=1}^{n} q_{x_i} q_{y_i}} \]
Computing the log odds ratio to score an alignment

\[S = \sum_{i=1}^{n} \log \frac{p_{x_i y_i}}{q_{x_i} q_{y_i}} \]

Score of an alignment

\[s(a, b) = \log \frac{p_{a,b}}{q_a q_b} \]

Substitution matrix entry
Some common substitution matrices

• BLOSUM matrices [Henikoff and Henikoff, 1992]
 • BLOSUM45
 • BLOSUM50
 • BLOSUM62
 • Number represents percent identity of sequences used to construct substitution matrices

• PAM [Dayhoff et al, 1978]

• Empirically, BLOSUM62 works the best
How to estimate the probabilities?

• Need a good set of confirmed alignments

• Depends upon what we know about when the two sequences might have diverged

 • p_{ab} for closely related species is likely to be low if $a \neq b$

 • p_{ab} for species that have diverged a long time ago is likely close to the background.
BLOSUM matrices

- BLOck Substitution Matrix
- Derived from a set of aligned ungapped regions from protein families called BLOCKS
- Cluster proteins such that they have no less than $L\%$ of similarity
Different BLOSUM matrices

- BLOSUM50
 - Proteins >50% similarity are in the same group
- BLOSUM62
 - Proteins >62% similarity are in the same group
Example substitution scoring matrix (BLOSUM62)

	A	R	N	D	C	Q	E	G	H	I	L	K	M	F	P	S	T	W	Y	V	X			
A	4																							
R	-1	5																						
N	-2	0	6																					
D	-2	-2	1	6																				
C	0	-3	-3	-3	-9																			
Q	-1	1	0	0	-3																			
E	-1	0	0	4	2	5																		
G	0	-2	0	-1	-3	-2	-2	6																
H	-2	0	1	-1	-3	0	0	-2	8															
I	-1	-3	-3	-3	-1	-3	-3	-4	-3															
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4													
K	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5												
M	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5											
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6										
P	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7									
S	1	-1	1	0	-1	0	0	0	0	-1	-2	-2	0	-1	-2	-1	4							
T	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-2	-1	1	5								
W	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-3	-1	1	-4	-3	-2								
Y	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7					
V	0	-3	-3	-3	-1	-2	-2	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4					
X	0	-1	-1	-2	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	2	0	0	-2	-1	-1	-1			

- Positive for chemically similar substitution
- Common amino acids have low weights
- Rare amino acids have high weights
Local alignment between s and t: Best alignment between a subsequence of s and a subsequence of t.

Motivation:
Many genes are composed of domains, which are subsequences that perform a particular function.
Local Alignment

Recall in **global** alignment: $s_{i,j}$ is the score of optimally aligning:

prefix of length i of a **prefix** of length j of b
Local Alignment

In **local** alignment:

- $s_{i,j}$ is the score of optimally aligning:
 - some **substring** ending at position i of a
 - some **substring** ending at position j of b
Local Alignment

In **local** alignment: $s_{i,j}$ is the score of optimally aligning:

some **suffix** of the **prefix** of length i of a

some **suffix** of the **prefix** of length j of b
Local Alignment

Conceptually:
connect source to every node
connect every node to sink
Local Alignment

Conceptually:
connect source to every node
connect every node to sink

Implementation:
connect source to every node

\[
s_{i,j} = \max \begin{cases}
0 \\
 s_{i-1,j} - \sigma \\
 s_{i,j-1} - \sigma \\
 s_{i-1,j-1} + \text{SCORE}(a_i, b_j), \\
\end{cases}
\]
Local Alignment

Conceptually:
- connect source to every node
- connect every node to sink

Implementation:
- connect every node to sink
- start backtrack at node with max score anywhere in the graph
- stop backtrack if 0 option taken
Global/Local Alignment Recap

• Scoring matrices: based on probabilistic models of amino acid evolution

• Algorithm for global alignment sometimes called “Needleman-Wunsch”

• Algorithm for local alignment sometimes called “Smith-Waterman”

• Same basic algorithmic framework