Entities, processes and artifacts

- Genome Sequences

 TCAGTTGGAGCTGCCCTCCACGCTCTCTGCTGACGTTGCTGTATGAGCTACCTCCACACCTTGGTACCTCCTCTCTCTGACATGAAAAGGCACATGAGGATCCTCAAATACCCCGGTGATCAGTCTCAGGGTAGCTCTCATAGCCTGGACAGGGCCCCCTCGGGGGTTGCGCCCAGGTCCAGGCGGGGGATGCACAGCAACAGTCACCGAAGCAGAAGCCGTCACAGTGGTGATGGGCTG

 GCAGTAGCTGGGGCACAGAGCTGCCCATGGCAGTTGGTGGGGAGGCTTTTTCTATGGGCAGAATGATAGCTGGGGCTGTTGCCGAGGGTGTCAGGGAGGCTGATGTCTGGAGTCCGGATGGACCACCTGCAGAGGAGAGACATAGGTCAACACAGGGAGGTAGGATGGTGGTGATGTTCCACCCAAAGAAAACCTATTCCTTTAGAAAACCTCCAGGATGTGAATCCTGCCTGCACCTGCAGCTGGCTGGAGGCATATAGCCACTGCCCATAGATCTCAACTTACCCTCACAACCAACTGCCCCAGGCTAAGTTCTCTCAAAACTGCCAGGGCAGAAGCAAATGTACTGTAAGAGCAGAGCAAAAACTTCCACACAGATAGTTCTGTTAGGCAATACATCTCTGCCTGACTATTAGGAATCTGGTTTCTGGGTCCTCTGTACAAAGCTCGGAGCAACACAGTGGCCACATCAATCAAAAGGACCGTGACCAACTTCAAAGTCGGTGAGCTTGTACCTATTTTTAGGCTCCTGCTGAACAGAACCAGATTCACACTACAGCTCAGCAGGGCATCGTCACGGGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTGGGGGGGGGGTGGACAGAGGACGGGGACACAATTCACTGGCCAGCCCTCTCTCTCTTGAAAGGCTGCTCTAGCCTGGACTGGAATACACATTTCCTGTAAACATGGTGGGGGCCTCAGGCAAGCCAGAGTTTTGGAGCCTTCCTTAACTCTTCAAGGTGAGCATCTTGACTTGGAGGGTGGGGGTGCGGGTAAGGAAGGAACCTGTGGACTCCTCCCTACAAGACAGAAAAGGAATAAGCCACGAAGACAATAACGATTTTTGTATCAAGCGTCCTCTCCCATTTCAGCTTACCTGACAATGAAATCAAATTCGGACCCTGCAAGCA
Entities, processes and artifacts

- Genome Sequences
- Gene Expression Measurements

Results

Initial, we collected samples from 17 individuals affected with the translocation. In addition, we collected samples from 10 of which had a translocation. Initially, we collected samples from conventional B-precursor ALL that lack this translocation. We compared the gene expression profiles of lymphoblastic leukemias with and without rearranged MLL is distinct from conventional ALL.

Relevant Literature

First, we determined whether there were genes different from that of conventional ALL. MLL shows a gene expression profile markedly different from conventional ALL, and about 200 genes are relatively underexpressed and the bottom 50 genes relatively overexpressed in MLL. Gene accession numbers and the top 200 genes that make the ALL/MLL distinction are represented by increasing color intensity. The top 50 genes are most highly correlated with the class distinction are shown. Each column represents a leukemia sample, and each row represents an individual gene. Expression levels are normalized to the mean.

Inspection of the genes differentially expressed between MLL and ALL is instructive (Fig. 1). Many genes underexpressed in MLL have a function in early B-cell development. These include genes that are expressed in progenitors other than lymphocytes are also highly expressed in MLL. These genes include CD24, CD22, LGALS1, and CD137.

Several genes that are expressed in hematopoietic lineages include genes that are expressed in progenitors other than lymphocytes and are highly expressed in MLL. These genes include genes encoding certain adhesion molecules, genes required for appropriate B-cell development, and genes involved in early B-cell development. These genes include CD24, CD22, LGALS1, and CD137.

Genes encoding certain adhesion molecules are relatively overexpressed in MLL. These genes include CD24, CD22, LGALS1, and CD137.

CD24, CD22, LGALS1, and CD137 are highly expressed in MLL, including CD24, CD22, LGALS1, and CD137.

To further investigate the significance of the observed differences in gene expression, we used permutation testing to assess the statistical significance of the observed differences in gene expression with the MLL/ALL distinction (Fig. 1). We sorted the genes by their degree of correlation overexpressed in MLL. Gene accession numbers and the top 200 genes that make the ALL/MLL distinction are represented by increasing color intensity. The top 50 genes are most highly correlated with the class distinction are shown. Each column represents a leukemia sample, and each row represents an individual gene. Expression levels are normalized to the mean.

Increasing distance from the mean is shown. Each column represents a leukemia sample, and each row represents an individual gene. Expression levels are normalized to the mean.

Each column represents a leukemia sample, and each row represents an individual gene. Expression levels are normalized to the mean.
Entities, processes and artifacts

• Genome Sequences

• Gene Expression Measurements

• Networks of gene or protein relationships/interactions
Entities, processes and artifacts

• Genome Sequences

• Gene Expression Measurements

• Networks of gene or protein relationships/interactions

• Sequence alignments

• Phylogenetic trees

• Genome variation in populations
Libraries

1. Connect/access databases

2. Data structures for fundamental objects

3. Basic operations/algorithms on these structures

4. Tools for communication
Libraries

- R: Bioconductor: http://bioconductor.org/
- Python: BioPython: http://biopython.org/wiki/Main_Page
- C++: SeqAn: http://www.seqan.de/
- Perl: BioPerl: http://www.bioperl.org/wiki/Main_Page
- Java: BioJava: http://biojava.org/wiki/Main_Page
Databases

We will discuss these in later lectures

• Sequence: Genbank/Refseq/Unigene/Short Read Archive

• Gene Expression: Gene Expression Omnibus

• Pathways: KEGG

• Function: Gene Ontology
Standards

• Many of these data are stored in standard formats:

 • FASTA sequence format

 • FASTQ sequence/with quality

 • GTF/GFF for genomic features (genes, exons, introns, etc.)

• Libraries provide interfaces to the databases and standards.
Encapsulation

• Libraries also encapsulate these standard data types into appropriate data structures for the given language.

• Example: sequence records in BioPython

• Example: ‘GenomicRanges’ in R/Bioconductor
Encapsulation

- Example: ‘ExpressionSet’ in R/Bioconductor
Encapsulation

- Basic operations on these data structures
 - Standard computation: e.g., aggregation, filtering, etc.
 - Bio-specific: e.g., genomic region overlap, DNA->AminoAcid translation
Communication

• Big part of the Bioinformatician and Computational Biologist job:

 • **Communicate results**

• Examples:

 • New sequence aligner: how fast is it? how well does it align?

 • Expression analysis: Does the data match your analysis?
Communication

• Visualize data
 • Tons of plotting utilities in R/Bioconductor
 • matplotlib in python
 • Documentation standards
 • pydoc
Reproducibility

• Extremely important aspect of data analysis
 • ‘Starting from the same raw data, can we reproduce your analysis and obtain the same results?’

• Using libraries helps:
 • Since you don’t reimplement everything, reduce programmer error
 • Large user bases serve as ‘watchdog’ for quality and correctness

• Standard practices help:
 • Version control: git
 • Unit testing: pyunit, RUnit
 • Share and publish: github
Practical Tips

• Many tasks can be organized in modular manner:

 • Data acquisition

 • Algorithm/tool development

 • Computational analysis

 • Communication of results
Practical Tips

• Many tasks can be organized in modular manner:

 • Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it up

 • Algorithm/tool development

 • Computational analysis

 • Communication of results
Practical Tips

• Many tasks can be organized in modular manner:

 • Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it up

 • Algorithm/tool development: if new analysis tools are required

• Computational analysis

• Communication of results
Practical Tips

• Many tasks can be organized in modular manner:

 • Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it up

 • Algorithm/tool development: if new analysis tools are required

 • Computational analysis: use tools to analyze data

 • Communication of results
Practical Tips

• Many tasks can be organized in modular manner:

 • Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it up

 • Algorithm/tool development: if new analysis tools are required

 • Computational analysis: use tools to analyze data

 • Communication of results: prepare summaries of experimental results, plots, publication, upload processed data to repositories
Practical Tips

• Many tasks can be organized in modular manner:

 • Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it up

 • Algorithm/tool development: if new analysis tools are required

 • Computational analysis: use tools to analyze data

 • Communication of results: prepare summaries of experimental results, plots, publication, upload processed data to repositories

Rarely does a single language handle all of these equally well
Practical Tips

- Many tasks can be organized in modular manner:
 - Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it up
 - Algorithm/tool development: if new analysis tools are required
 - Computational analysis: use tools to analyze data
 - Communication of results: prepare summaries of experimental results, plots, publication, upload processed data to repositories

Choose the best tool for the job!
Practical Tips

• Many tasks can be organized in modular manner:

 • Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it up

 R, python or shell scripting

 • Algorithm/tool development: if new analysis tools are required

 • Computational analysis: use tools to analyze data

 • Communication of results: prepare summaries of experimental results, plots, publication, upload processed data to repositories
Practical Tips

• Many tasks can be organized in modular manner:

 • Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it up

 • Algorithm/tool development: if new analysis tools are required

 C/C++, R or python (depending on task)

 • Computational analysis: use tools to analyze data

• Communication of results: prepare summaries of experimental results, plots, publication, upload processed data to repositories
Practical Tips

• Many tasks can be organized in modular manner:

 • Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it up

 • Algorithm/tool development: if new analysis tools are required

 • Computational analysis: use tools to analyze data

 Best managed as shell or python scripts

 • Communication of results: prepare summaries of experimental results, plots, publication, upload processed data to repositories
Practical Tips

• Many tasks can be organized in modular manner:

 • Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it up

 • Algorithm/tool development: if new analysis tools are required

 • Computational analysis: use tools to analyze data

 • Communication of results: prepare summaries of experimental results, plots, publication, upload processed data to repositories

I use R almost exclusively
Practical Tips

• Many tasks can be organized in modular manner:

 • Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it up

 • Algorithm/tool development: if new analysis tools are required

 • Computational analysis: use tools to analyze data

 • Communication of results: prepare summaries of experimental results, plots, publication, upload processed data to repositories

Usually all of this is managed by a pipeline of shell/python scripts
Practical Tips

• Modularity requires organization and careful thought

• In bioinformatics we wear two hats

 • Algorithm/tool developer

 • **Experimentalist**: we don’t get trained to think this way enough!

• It helps two consciously separate these two jobs
Think like an experimentalist

• Plan your experiment

• Gather your raw data

• Gather your tools

• Execute experiment

• Analyze

• Communicate
Think like an experimentalist

- Let this guide your organization. I find structuring my projects like this to be useful:

```
project/
  | data/
  |   | processing_scripts
  |   | raw/
  |   | proc/
  | tools/
  |   | src/
  |   | bin/
  | exps
  |   | pipeline_scripts
  |   | results/
  |   | analysis_scripts
  |   | figures/
```
Think like an experimentalist

• Keep a lab notebook!

• Literate programming tools are making this easier for computational projects

 • http://ipython.org/notebook.html

 • http://www.rstudio.com/ide/docs/r_markdown
Think like an experimentalist

• Separate experiment from analysis from communication

 • Store results of computations, write separate scripts to analyze results and make plots/tables

• Aim for reproducibility

 • There are serious consequences for not being careful

 • Publication retraction

 • Worse: http://videolectures.net/cancerbioinformatics2010_baggerly_irrh/

• Lots of tools available to help, use them! Be proactive: learn about them on your own!