
A Faster Reliable Algorithm to Estimate the p-Value
of the Multinomial llr Statistic

Uri Keich and Niranjan Nagarajan

Department of Computer Science, Cornell University, Ithaca, NY-14850, USA
{keich,niranjan}@cs.cornell.edu

Abstract. The subject of estimating the p-value of the log-likelihood ratio statis-
tic for multinomial distribution has been studied extensively in the statistical lit-
erature. Nevertheless, bioinformatics laid new challenges before that research by
often concentrating its interest on the “thin tail” of the distribution where classical
statistical approximation typically fails. Hence, some of the more recent develop-
ment in this area have come from the bioinformatics community ([5], [3]).
Since algorithms for computing the exact p-value have an exponential complex-
ity, the only generally applicable algorithms for reliably estimating the p-value
are lattice based. In particular, Hertz and Stormo have a dynamic programming
algorithm whose complexity is O(QKN2), where Q is the size of the lattice, K
is the size of the alphabet andN is the size of the sample. We present a new algo-
rithm that is practically as reliable as Hertz and Stormo’s and has a complexity of
O(QKN logN). An interesting feature of our algorithm is that it can guarantee
the quality of its estimated p-value.

1 Introduction

The subject of goodness-of-fit tests in general and of using the (generalized) log-
likelihood ratio (llr) statistic, in particular, is of great importance in applications of
statistics. In many applications, an important question to answer is how unlikely is it
that an observed sample came from a particular multinomial distribution (H0)? But in
order to answer this question, we first need to quantify the similarity level between
the observed sample distribution and the null distribution. The llr statistic, G2 (defined
below) is a popular measure as it is provably optimal under some conditions. Indeed,
it is so popular that it has several other names which are more commonly used in the
information theory and bioinformatics community: entropy distance, relative entropy,
information content, Kullbak-Leibler divergence etc., all of which (upto a factor of N)
stand for I = G2/2, where

I =
∑

k

Xk log (Xk/(Nπk)) 1,

for a null multinomial distribution π = (π1, . . . , πK) and a random sample X =
(X1, . . . , XK) of size N =

∑
k Xk. Note that I = 0 if and only if the empirical

1 One can readily show that G2 = 2I is a generalized llr (e.g. [12]).

I. Jonassen and J. Kim (Eds.): WABI 2004, LNBI 3240, pp. 111–122, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

112 Uri Keich and Niranjan Nagarajan

distribution is identical to π which is to be expected from something that is supposed
to measure the distance (not in a metric sense) between these distributions.

The question of how unlikely is it that the particular sample n = (n1, . . . , nK) of
size N =

∑
nk came from π can then be translated to the following p-value that we

need to compute:

PH0

(
I ≥

∑

k

nk log
nk

Nπk

)
,

or more generally, given an observed score s, what is PH0(I ≥ s)? The latter question
has been studied extensively in the statistical literature and has several types of estimates
and means of computation which we survey below before describing our own novel
technique.

The first type of estimates are in the form of universal upper and lower bounds such
as the following one from Hoeffding [7]:

c0N
−(K−1)/2 exp(−s) ≤ P (I ≥ s) ≤

(
N +K − 1
K − 1

)
exp(−s), (1)

where c0 is a positive absolute constant which can be taken to be 1/2. Kallenberg
has provided sharper (and more complicated) bounds [8] but he added that “. . . the
bounds are not intended as direct numerical approximations of the involved probabili-
ties . . . they are useful because they have the right order of magnitude” and this will be
relevant to us later on.

We can obtain asymptotically correct estimates based on the result that keeping π
fixed and letting the sample size N → ∞,

PH0 (G
2 ≥ s) −→ χ2

K−1(s)

(e.g. [12]). The rate of convergence and various corrections have been studied and are
discussed in [4]. While the χ2 approximation is a valid asymptotic result, in a typical
applicationN is fixed and as s approaches the tail of the distribution the approximation
can be quite poor. For example, for a null distribution of πi = i/10 with i = 1, . . . , 4
and N = 40, the p-value of s = 120 is roughly 7.8e-27 while the χ2 approximation
yields 7.7e-26, a factor of 10 off (and all else being equal, as s grows this will become
worse).

Algorithmically, the simplest approach to computing the p-value is by naively enu-
merating all possible empirical distributions. However, the number of possible distri-
butions grows like

(
N+K−1

N

)
, thus giving us a O(NK−1) algorithm. Aware of these

problems, Baglivo et al. [1] designed a polynomial time algorithm to approximate the
p-value using a lattice. In principle the lattice can also be used to guarantee the quality
of the approximation. However Baglivo et al.’s Algorithm employs the DFT (discrete
Fourier transform) [10] and is therefore prone to exceedingly large numerical errors
which originate from the inherent roundoff errors that would accompany any imple-
mentation of the DFT[6].

In bioinformatics I is heavily used in the context of evaluating the quality of an
ungapped multiple sequence alignment [13] as in the popular motif-finder programs
Meme [2] and Consensus [5]. Other usages were recently surveyed in [3]. Given the

A Faster Reliable Algorithm to Estimate the p-Value of the Multinomial llr Statistic 113

typical size of bioinformatics data, we are often forced to deal with exceedingly small
p-values for which the χ2 approximation breaks down. Thus, it should be of no surprise
that some of the advancements in this area came from this community. Hertz and Stormo
[5] provide a dynamic programming algorithm which, similar to Baglivo et al., uses a
lattice approximation of the p-value. Both algorithms have a complexity ofO(QKN2),
where Q is the size of the lattice. However, Hertz and Stormo’s algorithm has a much
better handle of the numerical errors and by and large their algorithm is accurate to the
mesh of the lattice. A slight modification of this algorithm is implemented as part of
Meme’s statistical evaluation of its results (version 3.0.3).

More recently Bejerano [3] introduced a new branch and bound algorithm to find the
exact p-value. Since this approach does not use a lattice and is also a numerically stable
algorithm, in general, it yields the most accurate result. However, it is only suitable
for small Ks as it exhibits an exponential behavior in K . For K = 4 it has a runtime
of the order of N2 and in general it seems to have a runtime function that has the
order of NK−2. In another recent work Rahmann [11] apparently re-discovered Hertz
and Stromo’s dynamic programming method but in addition the paper also includes a
clearer exposition of the problem and the algorithm. The paper also makes the important
observation that in order to preserve accuracy, Q has to be increased linearly with N
(assuming fixed π).

In this paper, we present a new algorithm that yields a lattice approximation of the
p-value, PH0 (I ≥ s) in O(QKN logN) time. We start with Baglivo et al.’s Algorithm
and modify it using a technique we recently developed in [9] to control the numerical
errors in FFT (fast Fourier transform) based convolutions. An interesting feature of our
algorithm is that it provides a fairly reliable (and useful) upper bound on the numerical
error in our estimate for the p-value.

2 Baglivo et al.’s Algorithm

Instead of computing the pmf (probability mass function) of I , Baglivo et al. suggest
that we compute the pmf of the lattice valued random variable IQ which approximates
I , where

IQ =
∑

k

round
[
δ−1Xk log(Xk/(Nπk))

]
2.

Here δ = δ(Q) = Imax/(Q − 1) is the mesh size, Imax = N log π−1
min is the maximal

entropy and πmin = min{πk}. By estimating pQ, the pmf of IQ, we can use

∑

�s/δ+K/2�
pQ(j) ≤ P (I ≥ s) ≤

∑

�s/δ−K/2�
pQ(j).

to get a good estimate of P (I ≥ s) (assuming that the lattice is fine enough.)

2 Note that due to rounding effects IQ might be negative but we shall ignore this as the arithmetic
we perform is modulo Q. The concerned reader can redefine δ = Imax/(Q− 1 − �K/2�).

114 Uri Keich and Niranjan Nagarajan

In order to compute pQ Baglivo et al.’s Algorithm starts by computing the DFT of
pQ, Φ = DpQ:

Φ(l) =
Q−1∑

j=0

pQ(j)eiω0jl for l = 0, 1, . . . , Q− 1,

where ω0 = 2π/Q. Once we have Φ, we can recover pQ by applyingD−1, the inverse-
DFT:

pQ(j) = (D−1Φ)(j) =
1
Q

Q−1∑

l=0

Φ(l)e−iω0lj .

At first glance this seems like a page out of the adventures of Baron Munchausen
since after all we need pQ in order to compute Φ to begin with. However, there is an
alternative way to compute Φ as we outline next. As is explained in [1], we know that

Φ(l) =
1

P (X+ = N)

∑

x∈Z+K :
∑

xj=N

K∏

j=1

pj(xj)eiω0lsj(xj) =
ψK(N, l)

P (X+ = N)
,

where X+ is a Poisson λ = N random variable, pk is the Poisson λ = Nπk pmf and
sk(y) = round[δ−1y log(y/Nπk)] (the contribution to IQ from the k-th letter appearing
y times). It is not difficult to check that ψk actually satisfies the following recursive
formula [1]:

ψk(n, l) =
n∑

x=0

pk(x)eilω0sk(x)ψk−1(n− x, l). (2)

Thus using (2) Φ(l) can be recovered in O(KN2) steps for each l separately and
hence O(QKN2) steps overall. Finally, using an FFT implementation of DFT [10]
they get an estimate of pQ in an additional O(Q logQ) steps (which should typically
be absorbed in the first term). However, as we mentioned earlier, the algorithm as it is
has a serious limitation in that numerical errors introduced by the use of the FFT can
quickly become dominant in the calculations. An example of this phenomena can be
observed with the parameter values, Q = 8192, N = 100, K = 20 and πi = 1/20,
where Baglivo et al.’s Algorithm yields a negative p-value for P (I ≥ 40).

3 Our Algorithm 1.0

To reduce the often unacceptable level of numerical errors in Baglivo et al.’s Algorithm
we follow [9] and apply an exponential shift to pQ. A simple example can help explain
the idea. Let p(x) ∝ e−x for x ∈ {0, 1, . . . , 255}. In Figure 1 we compare p with

q = D̃−1(D̃p), where D̃ and D̃−1 are the machine implemented FFT and inverse FFT
operators. As can be seen, while theoretically equal, in practice the two differ signifi-
cantly. Now, if we apply an exponential shift to p prior to invoking the FFT operators
then we get maxx | log qθ(x)/p(x)| < 1.78 ·10−15, where θ = 1, pθ(x) = p(x)eθx and

qθ(x) =
(
D̃−1

(
D̃pθ

))
(x) · e−θx. So p is recovered almost up to machine precision

A Faster Reliable Algorithm to Estimate the p-Value of the Multinomial llr Statistic 115

(ε0 ≈ 2.2 · 10−16). The reason this works is that by applying the correct exponential
shift we “flatten” p so that the smaller values are not overwhelmed by the largest ones
during the computation of the fourier transforms.

0 50 100 150 200 250 300
−120

−100

−80

−60

−40

−20

0

x

lo
g 10

 f(
x)

Numerical errors in FFT

f(x) = p(x)
f(x) = q(x)

Fig. 1. The destructive effects of numerical roundoff errors in FFT.

This figure illustrates the potentially overwhelming effects of numerical errors in applications
of FFT. p(x) ∝ e−x for x ∈ {0, 1, . . . , 255} is compared with what should (in the absence of

numerical errors) be the same quantity: q = D̃−1(D̃p), where D̃ and D̃−1 are the machine im-
plemented FFT and inverse FFT operators, respectively. This dramatic difference all but vanishes
when we apply the correct exponential shift prior to applying D.

Needless to say this exponential shift will not always work. However, we do know
that “to first order” our p-value behaves like e−s (with fixed N and K) as is evident
from (1). This suggests that we would benefit from applying an exponential shift to pQ.
Let

pθ(j) =
pQ(j)eθδj

M(θ)
,

whereM(θ) = EeθIQ is the MGF (moment generating function) of IQ. Figure 2 shows
an example of the flattening effect such a shift has on pQ. Note that for a given θ, M(θ)
can be reliably estimated in O(KN2) steps by replacing eilω0sk(x) with eθsk(x) in (2)
and essentially repeating Baglivo’s et al. procedure (but for a single value of θ).

The discussion so far implicitly assumed that we know pQ which of course we do
not. Nevertheless, we can compute Φθ = Dpθ by slightly modifying the algorithm of
Baglivo et al. All we need to do is replace the Poisson pmfs pk with a shifted version
pk,θ(x) = pk(x)eθsk(x)/M(θ)πk and also replace ψk with the obvious ψk,θ .

ψk,θ(n, l) =
n∑

x=0

pk,θ(x)eilω0sk(x)ψk−1,θ(n− x, l). (3)

116 Uri Keich and Niranjan Nagarajan

0 200 400 600 800 1000 1200
−1200

−1000

−800

−600

−400

−200

0

s

 lo
g

p

0 200 400 600 800 1000 1200
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

s

 lo
g 10

 p
θ

θ=1

Fig. 2. How can an exponential shift help?

The graph on the left is that of log pQ(s/δ) where N = 400, Q = 8192 and πk = k/15 for
k = 1, . . . , 5. The graph on the right is of the log of the shifted pmf, log pθ(s/δ) where θ = 1.
Note the dramatic flattening effect of the exponential shift (keeping in mind the fact that the scales
of the y-axes are different).

This allows us to compute Φ̃θ(l), an estimate of3 Φθ(l) = ψK,θ(N, l)/P (X+ = N)
in the same O(KN2) steps for each fixed l. We then compute an estimate p̃Q of pQ

based on pQ(j) =
(
D−1Φθ

)
(j)e−θδjM(θ). It is important to note that should the need

arise (for example, for estimating very small p-values in the tail of the distribution) we
can just as well estimate log pQ(j) = log pθ(j) − θδj + logM(θ) which significantly
extends the range of p-values that can be computed by our algorithm. Finally, the p-
value is estimated by

∑
j≥s/δ p̃Q(j) (or the logarithmic version of that summation).

We are still left with the question of which θ to use. Equation (1) suggests θ = 1 and
indeed it typically yields the widest range of js for which p̃Q(j) provides a “decent”
approximation of pQ(j). However, for a given s0 = j0δ there would typically be a
better choice of θ. Intuitively, we want to center pθ about s0 and that is the case with
θs0 = argminθ [−θs0 + logM(θ)]. The minimization procedure can be carried out
numerically4 by using, for example, Brent’s method [10] which would cost us another
O(KN2) (but is outside the main loop on l). Finally, the next claim whose technical
proof is outlined in the appendix gives an upper bound on our error.

Claim 1
|p̃Q(j) − pQ(j)| ≤ C(NK + logQ)ε0e−θδj+log M(θ), (4)

where C is some small universal constant and ε0 is the machine precision.

Note that for s0 = δj0 this upper bound is exactly minimized for θs0 , thus giving us
another justification for our choice of θ.

Although (4) can be used to measure the quality of our approximation, we would
like to emphasize a different “quality-control” method that works well in practice.

3 Due to unavoidable numerical errors we cannot expect to recover Φθ(l) precisely.
4 A crude approximation of θs0 would typically suffice for our purposes.

A Faster Reliable Algorithm to Estimate the p-Value of the Multinomial llr Statistic 117

As observed in [9] Im p̃θ is not 0 only because of numerical errors. Thus, εIm =
maxj

∣∣Im p̃θ(j)
∣∣ is typically an indicator of the level of noise in p̃θ. For example, with

N = 400, Q = 8192, and πk = k/15 for k = 1, . . . , 5 we applied our algorithm
1.0 with θ = 1 to find that setting a noise threshold of Re p̃θ(j) > 103εIm correctly
recovers all of the non vanishing entries of pθ at 9-digit accuracy5.

4 Our Algorithm 2.0

Algorithm 1.0 fixed the problem of numerical errors that plagued Baglivo et al.’s Al-
gorithm but its runtime complexity of O(QKN2 +Q logQ) is essentially the same as
that of Hertz and Stormo. An advantage of Baglivo et al.’s Algorithm, however, is that
it has a stingier memory requirement that scales as O(Q + N) as opposed to O(QN)
for Hertz and Stormo. An important observation that helps us to improve on the runtime
of our algorithm is the fact that (3) can be expressed as a convolution between the vec-
tors pkθl(x) = pk,θ(x)eilω0sk(x) and ψk−1,θ(·, l). A naively implemented convolution
requires O(N2) steps and hence that factor in the overall complexity. Alternatively, an
FFT-based convolution, justified by the equation (D(u ∗ v)) (j) = (Du)(j)(Dv)(j)
[10], would only require O(N logN) steps cutting down the overall complexity to
O(QKN logN +Q logQ) 6.

Simply implementing (3) using FFT, however, reintroduces the severe numerical er-
rors we worked hard to get rid of. The following example illustrates what is happening:
for θ = 1 one can easily verify that pk,θ(x) ≈ e−λk+x/

√
2πx. Computing Dpk,θ(x)

therefore faces essentially the same problem (only mirrored) as the one demonstrated
in our example of FFT applied to e−x. The solution is therefore to apply a negative
exponential shift to pkθl and ψk−1,θ(·, l) (i.e. multiply by e−θ2(k)x).

The problem of choosing θ2(k) is more involved than that of choosing θ. To begin
with we have to choose a shift for each k = 1, . . . ,K . In addition, in each case we
have to worry about simultaneously shifting three vectors: pkθl, ψk−1,θ(·, l) and their
convolution ψk,θ(·, l). We propose the following solution:

θ2(k) = argminθ′

[
θ′

k∑

i=1

λi + logMk(−θ′)
]
, (5)

where Mk is the MGF of qk,θ(x) = (ψk−1,θ(·, 0) ∗ pk,θ) (x) for x = 0, . . . , 2N 7. The
intuition behind this choice of θ2(k) is that it guarantees that the mean of qk,θ is at∑k

i=1 λi which, loosely speaking, says that the distribution of
∑k

i=1Xi has maximal
resolving power (relative to numerical noise) about its mean

∑k
i=1 λi.

We currently do not have theoretical bounds on the error that arises due to the use
of θ2(k). We instead tested our algorithm on a wide range of parameters and compared

5 Except for pθ(Q− 1) which has only 4-digits accuracy.
6 While Hertz and Stormo make a passing remark that they can also use FFT-based convolution

to cut the complexity to O(QKN logN) it seems unsubstantiated to us given that (17) in [5]
is not strictly a convolution.

7 Note that qk,θ(x) = ψk,θ(x, 0) for x = 0, . . . , N .

118 Uri Keich and Niranjan Nagarajan

Table 1. Range of test parameters.

Parameter Values
K 4, 10, 20
N 50, 100, 200, 400
π Uniform, Sloped, Blocked
s i

21
∗ Imax i ∈ [1..20]

Uniform refers to the distribution where πj = 1/K, Sloped refers to the case where πj =
j/(K ∗ (K + 1)/2), and Blocked refers to the case where

πj =

{
3/(4 ∗ �K/4�) j ≤ �K/4�
1/(4 ∗ (K − �K/4�)) otherwise

our results with those obtained using Hertz and Stormo’s algorithm (which is prov-
ably accurate) to get an estimate of the errors that arise in our algorithm. The range of
parameters is given in Table 1. With Q set to 16384 and the other parameters exhaus-
tively varying over the sets specified we found that our algorithm agreed with Hertz
and Stormo’s algorithm to at least 9 decimal places in all cases. This was found to be
true even when we ran an experiment where we choose values of s much closer to Imax

(using an interval halfing process on the range [(20
21 ∗ Imax)..Imax] to get 8 values of

s) and let the other parameters vary as before. This gives us reasonable confidence in
the belief that our methodology for choosing θ2(k) works. We are currently working on
a formal justification for this observation. In terms of complexity, the main loop now
takes O(QKN logN). The other terms add O(KN2 + Q logQ) to the runtime but
this should be small compared to the runtime cost of the main loop8 thus giving us a
O(QKN logN) algorithm.

5 Comparison to Other Algorithms

For estimating a single p-value the complexity of version 2.0 of our algorithm is an im-
provement over Baglivo et al.’s Algorithm which has a time complexity of O(QKN2).
More importantly, our algorithm offers much better control over the accumulation of
numerical errors. For example, when N = 50, K = 10 and πi = 1/10, Baglivo et al.’s
Algorithm is able to recover the p-value for only 8 out of the 20 s values that we test
on (where we only require correctness to 1 decimal place.) In contrast, our algorithm
recovers the p-value accurately to at least 10 decimal places in all cases. In addition, our
algorithm has a built-in quality control mechanism and should the p-value be too small
for machine representation (not uncommon in bioinformatics applications) we can give
the result in terms of log(p-value).

Bejerano’s algorithm is more accurate than ours and is faster for K ≤ 4. How-
ever even for mildly large Ks it becomes impractical (in particular this is the case with
K = 20) as it grows exponentially with K , presumably like O(NK−2). Hertz and

8 As observed in [11], in order to preserve the bound on the distance between pQ and our real
subject of interest, pI , (the pmf of I), Q has to grow linearly with N .

A Faster Reliable Algorithm to Estimate the p-Value of the Multinomial llr Statistic 119

Stormo are overall our closest competitors but their complexity is O(QKN2). In addi-
tion, if their algorithm is implemented explicitly as written [5], then it tends to suffer
from intermediate underflows. For example, when applied to N = 200, Q = 16384,
and π ≡ 1/20, all entries of pQ less than 10−135 are estimated as 0. These intermediate
errors can be eliminated if we switch to performing arithmetic on log pQ instead of on
pQ, but that results in a non-trivial constant sitting in front of the O(QKN2). Alter-
natively, one can speed up the log arithmetic by using tables, as in Meme’s (v3.0.3)
implementation of Hertz and Stormo’s algorithm, although that has the potential of in-
troducing uncomfortably large numerical errors. For example, for N = 50, πi = i/10
i = 1, . . . , 4 and Q = 104, Meme’s implementation seems to estimate the p-value
of s = 6 as 0.0027 whereas the correct answer is 0.0095. An additional advantage of
our method over Hertz and Stormo’s algorithm (that it shares with Baglivo et al.’s Algo-
rithm) is that the computation for each value of l can be carried out separately, incurring
a space requirement that is O(Q+N) whereas for Hertz and Stormo it is O(QN).

We implemented our algorithm and Hertz and Stormo’s algorithm in Matlab to com-
pare the accuracy of the two algorithms. As a by-product, we also measured the running
time of the two algorithms in Matlab and found that ours was on average between 10
and 100 times faster than Hertz and Stormo’s algorithm on the range of parameters that
we tested. In the case whereN = 400 andK = 20, while Hertz and Stormo’s algorithm
took nearly a day and a half to compute the p-value, our algorithm took less than 7 min-
utes to do so. For more accurate runtime comparisons we have also written C programs
that implement the two alogrithms. We have also worked on optimizing the C code for
producing a fair comparison of the two algorithms (and there is still some scope for
improvement, especially in the FFT implementations.) This is important because we
found that while the code for Hertz and Stormo’s algorithm shows little speedup when
we turn on C compiler optimizations, the code for our algorithm runs twice as fast with
even minor improvements to the code. The asymptotic behavior of the two algorithms is
however clear even for small values of N . Figure 3 shows the behavior with increasing
N for a fixed choice of the other parameter values (the graph looks the same for other
choices of the parameter values too.)

Finally, while our algorithm was designed for finding a single p-value it turns out
that in practice it can be easily adapted to reliably estimate pQ in its entirety. The latter
task is also performed by Hertz and Stormo’s algorithm. In some cases our algorithm
already does that. For example, setting s = 500 for N = 400, Q = 8192 and π = i/15
i = 1, . . . , 5 we get a reliable estimate for the entire pQ (relative error < 10−6). More
generally, in the cases that we have tried we can reliably recover the entire range of
values of pQ using as little as 2-3 different ss, or equivalently, θs (recall that each
estimate has a quality control factor which allows us to choose the estimate which
has better error gaurantees). Using version 2.0 of our algorithm this approach can still
be significantly cheaper than running Hertz and Stormo’s algorithm. We should also
point out that Baglivo et al.’s comment regarding their algorithm being easily paral-
lelizable is still valid for our algorithm since (3) can be computed separately for each
l = 0, 1, . . . , Q− 1.

120 Uri Keich and Niranjan Nagarajan

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120 140 160

R
un

tim
e

(i
n

se
co

nd
s)

N

Runtime comparison with varying N

Our method version 2.0
Hertz and Stormo

Fig. 3. Runtime comparison of Hertz and Stormo’s algorithm and version 2.0 of our method.

The parameter values used in this comparison are K = 20, πj = j/(K ∗ (K + 1)/2), s = 20
and Q = 1024. Note that the discontinuities in the curve for our method are due to the fact that
our implementation of FFT works with arrays whose sizes are powers of 2.

6 Future Work

There are many questions related to our work that deserve further study. For example,
the theoretical and experimental question of how many different θs are needed to re-
cover pQ in its entirety is wide open. Another interesting area of study involves finding
a theoretical grounding for our methodology for computing θ2(k). On the practical side,
the code for our algorithm is still being optimized, but we hope to make it available soon
for the general public.

Finally, the most exciting prospect resulting from this work is that of combining it
with our previous work [9] to obtain a fast and accurate system to compute the p-value
of the entropy score of a multiple sequence alignment of biosequences. Note that the
current work addresses the issue of computing the p-value of the entropy score of one
column whereas our previous work focuses on computing the p-value of the sum of the
entropy scores from all columns assuming that we have pQ.

Acknowledgements

The first author would like to thank Gill Bejerano for the numerous discussions that we
had on this subject and for generously sharing his code with us.

References

1. J. Baglivo, D. Olivier, and M. Pagano. Methods for exact goodness-of-fit tests. Journal of the
American Statistical Association, 87(418):464–469, 1992.

2. T.L. Bailey and C. Elkan. Fitting a mixture model by expectation maximization to discover
motifs in biopolymers. In Proceedings of the Second International Conference on Intelligent
Systems for Molecular Biology, pages 28–36, Menlo Park, California, 1994.

A Faster Reliable Algorithm to Estimate the p-Value of the Multinomial llr Statistic 121

3. G. Bejerano. Efficient exact value computation and applications to biosequence analysis.
In M. Vingron, S. Istrail, P.A. Pevzner, and M.S. Waterman, editors, Proceedings of the
Seventh Annual International Conference on Computational Molecular Biology (RECOMB-
03), pages 38–47, Berlin, Germany, 2003. ACM Press.

4. N. Cressie and T.R.C. Read. Person’s χ2 and the loglikelihood ratio statistic g2: A compar-
ative review. International Statistical Review, 57(1):19–43, 1989.

5. G.Z. Hertz and G.D. Stormo. Identifying DNA and protein patterns with statistically signifi-
cant alignments of multiple sequences. Bioinformatics, 15:563–577, 1999.

6. K.A. Hirji. A comparison of algorithms for exact goodness-of-fit tests for multinomial data.
Communications in Statistics-Simulation and Computations, 26(3):1197–1227, 1997.

7. W. Hoeffding. Asymptotically optimal tests for multinomial distributions. Annals of Mathe-
matical Statistics, 36:369–408, 1965.

8. W.C.M. Kallenberg. On moderate and large deviations in multinomial distributions. Annals
of Statistics, 13(4):1554–1580, 1985.

9. U. Keich. Efficiently computing the p-value of the entropy score. Journal of Computational
Biology, in press.

10. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical recipes in C. The
art of scientific computing. Cambridge University Press, second edition, 1992.

11. S. Rahmann. Dynamic programming algorithms for two statistical problems in computa-
tional biology. In Gary Benson and Roderic D. M. Page, editors, Proceedings of the Third
International Workshop on Algorithms in Bioinformatics (WABI-03), volume 2812 of Lecture
Notes in Computer Science, pages 151–164, Budapest, Hungary, 2003. Springer.

12. J.A. Rice. Mathematical Statistics and Data Analysis. Duxbury Press, second edition, 1995.
13. G.D. Stormo. DNA binding sites: representation and discovery. Bioinformatics, 16(1):16–23,

2000.

Appendix: Outline of the Proof of Claim 1

Proof. The following lemma can be readily derived from the results in [9] (see Lemmas
1-3, (20) & (21)). For α ∈ C we denote by α̃ its machine estimator and define eα =
α̃− α. For α, β ∈ C, we define

eα+β = ˜
α̃+ β̃ − (α+ β),

and similarly for eαβ .

Lemma 1. If |eα| < cαε∗ and |eβ | < cβε∗, then

|eα+β | ≤ (max{cα, cβ} + 1)ε∗(|α| + |β|)
|eαβ | ≤ (cα + cβ + 5)ε∗(|αβ|).

Using this lemma one can use (2) to prove by induction on k that

|ψk(n, l) − ψ̃k(n, l)| ≤ cNkε∗ψk(n, 0).

Note that when computing ψk(n, 0) we only deal with positive numbers. It follows that

|Φ̃θ(l) − Φθ(l)| ≤ CNKε∗|Φθ(0)| = CNKε∗,

122 Uri Keich and Niranjan Nagarajan

since Φθ(0) = 1. Using this result, Lemma 4 from [9], the fact that for x ∈ C
Q,

‖D−1x‖∞ ≤ 1
Q‖x‖1 and the triangle inequality we get

‖D−1Φ− D̃−1Φ̃‖∞ ≤ ‖D−1(Φ− Φ̃)‖∞ + ‖(D−1 − D̃−1)Φ̃‖∞
≤ 1
Q
‖Φ− Φ̃‖1 +

(C logQ)ε∗
Q

‖Φ̃‖1

≤ CNKε∗ + (C logQ)ε∗.

Claim 1 now follows by applying the inverse exponential shift (i.e. by multiplying
e−θδj+log M(θ)) to this error bound.

	1 Introduction
	2 Baglivo et al.’s Algorithm
	3 Our Algorithm 1.0
	4 Our Algorithm 2.0
	5 Comparison to Other Algorithms
	6 Future Work
	References
	Appendix: Outline of the Proof of Claim 1

