@article {49548, title = {Quantitative measurement of allele-specific protein expression in a diploid yeast hybrid by LC-MS.}, volume = {8}, year = {2012}, month = {2012}, pages = {602}, abstract = {

Understanding the genetic basis of gene regulatory variation is a key goal of evolutionary and medical genetics. Regulatory variation can act in an allele-specific manner (cis-acting) or it can affect both alleles of a gene (trans-acting). Differential allele-specific expression (ASE), in which the expression of one allele differs from another in a diploid, implies the presence of cis-acting regulatory variation. While microarrays and high-throughput sequencing have enabled genome-wide measurements of transcriptional ASE, methods for measurement of protein ASE (pASE) have lagged far behind. We describe a flexible, accurate, and scalable strategy for measurement of pASE by liquid chromatography-coupled mass spectrometry (LC-MS). We apply this approach to a hybrid between the yeast species Saccharomyces cerevisiae and Saccharomyces bayanus. Our results provide the first analysis of the relative contribution of cis-acting and trans-acting regulatory differences to protein expression divergence between yeast species.

}, keywords = {Alleles, Chromatography, Liquid, Fungal Proteins, Gene Expression Profiling, Gene Expression Regulation, Fungal, HUMANS, Mass Spectrometry, proteomics, Regression Analysis, Saccharomyces, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Species Specificity}, issn = {1744-4292}, doi = {10.1038/msb.2012.34}, author = {Khan, Zia and Bloom, Joshua S and Amini, Sasan and Singh, Mona and Perlman, David H and Caudy, Amy A and Kruglyak, Leonid} }