@article {49676, title = {The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus).}, journal = {Nature}, volume = {452}, year = {2008}, month = {2008 Apr 24}, pages = {991-6}, abstract = {

Papaya, a fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3x draft genome sequence of {\textquoteright}SunUp{\textquoteright} papaya, the first commercial virus-resistant transgenic fruit tree to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for fruit-tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica{\textquoteright}s distinguishing morpho-physiological, medicinal and nutritional properties.

}, keywords = {Arabidopsis, Carica, Contig Mapping, Databases, Genetic, Genes, Plant, Genome, Plant, Molecular Sequence Data, Plants, Genetically Modified, sequence alignment, Sequence Analysis, DNA, Transcription Factors, Tropical Climate}, issn = {1476-4687}, doi = {10.1038/nature06856}, author = {Ming, Ray and Hou, Shaobin and Feng, Yun and Yu, Qingyi and Dionne-Laporte, Alexandre and Saw, Jimmy H and Senin, Pavel and Wang, Wei and Ly, Benjamin V and Lewis, Kanako L T and Salzberg, Steven L and Feng, Lu and Jones, Meghan R and Skelton, Rachel L and Murray, Jan E and Chen, Cuixia and Qian, Wubin and Shen, Junguo and Du, Peng and Eustice, Moriah and Tong, Eric and Tang, Haibao and Lyons, Eric and Paull, Robert E and Michael, Todd P and Wall, Kerr and Rice, Danny W and Albert, Henrik and Wang, Ming-Li and Zhu, Yun J and Schatz, Michael and Nagarajan, Niranjan and Acob, Ricelle A and Guan, Peizhu and Blas, Andrea and Wai, Ching Man and Ackerman, Christine M and Ren, Yan and Liu, Chao and Wang, Jianmei and Wang, Jianping and Na, Jong-Kuk and Shakirov, Eugene V and Haas, Brian and Thimmapuram, Jyothi and Nelson, David and Wang, Xiyin and Bowers, John E and Gschwend, Andrea R and Delcher, Arthur L and Singh, Ratnesh and Suzuki, Jon Y and Tripathi, Savarni and Neupane, Kabi and Wei, Hairong and Irikura, Beth and Paidi, Maya and Jiang, Ning and Zhang, Wenli and Presting, Gernot and Windsor, Aaron and Navajas-P{\'e}rez, Rafael and Torres, Manuel J and Feltus, F Alex and Porter, Brad and Li, Yingjun and Burroughs, A Max and Luo, Ming-Cheng and Liu, Lei and Christopher, David A and Mount, Stephen M and Moore, Paul H and Sugimura, Tak and Jiang, Jiming and Schuler, Mary A and Friedman, Vikki and Mitchell-Olds, Thomas and Shippen, Dorothy E and dePamphilis, Claude W and Palmer, Jeffrey D and Freeling, Michael and Paterson, Andrew H and Gonsalves, Dennis and Wang, Lei and Alam, Maqsudul} }