@article {38316, title = {Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage}, journal = {The ISME journalThe ISME journal}, volume = {6}, year = {2012}, note = {http://www.ncbi.nlm.nih.gov/pubmed/22170421?dopt=Abstract}, type = {10.1038/ismej.2011.189}, abstract = {Bacteria in the 16S rRNA clade SAR86 are among the most abundant uncultivated constituents of microbial assemblages in the surface ocean for which little genomic information is currently available. Bioinformatic techniques were used to assemble two nearly complete genomes from marine metagenomes and single-cell sequencing provided two more partial genomes. Recruitment of metagenomic data shows that these SAR86 genomes substantially increase our knowledge of non-photosynthetic bacteria in the surface ocean. Phylogenomic analyses establish SAR86 as a basal and divergent lineage of γ-proteobacteria, and the individual genomes display a temperature-dependent distribution. Modestly sized at 1.25-1.7 Mbp, the SAR86 genomes lack several pathways for amino-acid and vitamin synthesis as well as sulfate reduction, trends commonly observed in other abundant marine microbes. SAR86 appears to be an aerobic chemoheterotroph with the potential for proteorhodopsin-based ATP generation, though the apparent lack of a retinal biosynthesis pathway may require it to scavenge exogenously-derived pigments to utilize proteorhodopsin. The genomes contain an expanded capacity for the degradation of lipids and carbohydrates acquired using a wealth of tonB-dependent outer membrane receptors. Like the abundant planktonic marine bacterial clade SAR11, SAR86 exhibits metabolic streamlining, but also a distinct carbon compound specialization, possibly avoiding competition.}, keywords = {Computational Biology, Gammaproteobacteria, Genome, Bacterial, Genomic Library, metagenomics, Oceans and Seas, Phylogeny, plankton, Rhodopsin, RNA, Ribosomal, 16S, Seawater}, author = {Dupont, Chris L. and Rusch, Douglas B. and Yooseph, Shibu and Lombardo, Mary-Jane and Richter, R. Alexander and Valas, Ruben and Novotny, Mark and Yee-Greenbaum, Joyclyn and J. Selengut and Haft, Dan H. and Halpern, Aaron L. and Lasken, Roger S. and Nealson, Kenneth and Friedman, Robert and Venter, J. Craig} } @article {49774, title = {Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage.}, journal = {ISME J}, volume = {6}, year = {2012}, month = {2012 Jun}, pages = {1186-99}, abstract = {

Bacteria in the 16S rRNA clade SAR86 are among the most abundant uncultivated constituents of microbial assemblages in the surface ocean for which little genomic information is currently available. Bioinformatic techniques were used to assemble two nearly complete genomes from marine metagenomes and single-cell sequencing provided two more partial genomes. Recruitment of metagenomic data shows that these SAR86 genomes substantially increase our knowledge of non-photosynthetic bacteria in the surface ocean. Phylogenomic analyses establish SAR86 as a basal and divergent lineage of γ-proteobacteria, and the individual genomes display a temperature-dependent distribution. Modestly sized at 1.25-1.7 Mbp, the SAR86 genomes lack several pathways for amino-acid and vitamin synthesis as well as sulfate reduction, trends commonly observed in other abundant marine microbes. SAR86 appears to be an aerobic chemoheterotroph with the potential for proteorhodopsin-based ATP generation, though the apparent lack of a retinal biosynthesis pathway may require it to scavenge exogenously-derived pigments to utilize proteorhodopsin. The genomes contain an expanded capacity for the degradation of lipids and carbohydrates acquired using a wealth of tonB-dependent outer membrane receptors. Like the abundant planktonic marine bacterial clade SAR11, SAR86 exhibits metabolic streamlining, but also a distinct carbon compound specialization, possibly avoiding competition.

}, keywords = {Computational Biology, Gammaproteobacteria, Genome, Bacterial, Genomic Library, metagenomics, Oceans and Seas, Phylogeny, plankton, Rhodopsin, Rhodopsins, Microbial, RNA, Ribosomal, 16S, Seawater}, issn = {1751-7370}, doi = {10.1038/ismej.2011.189}, author = {Dupont, Chris L and Rusch, Douglas B and Yooseph, Shibu and Lombardo, Mary-Jane and Richter, R Alexander and Valas, Ruben and Novotny, Mark and Yee-Greenbaum, Joyclyn and Selengut, Jeremy D and Haft, Dan H and Halpern, Aaron L and Lasken, Roger S and Nealson, Kenneth and Friedman, Robert and Venter, J Craig} } @proceedings {38374, title = {MetaPhyler: Taxonomic profiling for metagenomic sequences}, year = {2010}, month = {2010}, publisher = {IEEE}, type = {10.1109/BIBM.2010.5706544}, abstract = {A major goal of metagenomics is to characterize the microbial diversity of an environment. The most popular approach relies on 16S rRNA sequencing, however this approach can generate biased estimates due to differences in the copy number of the 16S rRNA gene between even closely related organisms, and due to PCR artifacts. The taxonomic composition can also be determined from whole-metagenome sequencing data by matching individual sequences against a database of reference genes. One major limitation of prior methods used for this purpose is the use of a universal classification threshold for all genes at all taxonomic levels. We propose that better classification results can be obtained by tuning the taxonomic classifier to each matching length, reference gene, and taxonomic level. We present a novel taxonomic profiler MetaPhyler, which uses marker genes as a taxonomic reference. Results on simulated datasets demonstrate that MetaPhyler outperforms other tools commonly used in this context (CARMA, Megan and PhymmBL). We also present interesting results obtained by applying MetaPhyler to a real metagenomic dataset.}, keywords = {Bioinformatics, CARMA comparison, Databases, Genomics, Linear regression, marker genes, matching length, Megan comparison, metagenomic sequences, metagenomics, MetaPhyler, microbial diversity, microorganisms, molecular biophysics, molecular configurations, Pattern classification, pattern matching, phylogenetic classification, Phylogeny, PhymmBL comparison, reference gene database, Sensitivity, sequence matching, taxonomic classifier, taxonomic level, taxonomic profiling, whole metagenome sequencing data}, isbn = {978-1-4244-8306-8}, author = {Liu, Bo and Gibbons, T. and Ghodsi, M. and M. Pop} }