MCMC-based particle filtering for tracking a variable number of interacting targets.

TitleMCMC-based particle filtering for tracking a variable number of interacting targets.
Publication TypeJournal Article
AuthorsKhan Z, Balch T, Dellaert F
JournalIEEE Trans Pattern Anal Mach Intell
algorithms, Animals, Artificial Intelligence, Computer simulation, HUMANS, Image Enhancement, Image Interpretation, Computer-Assisted, Information Storage and Retrieval, Markov chains, Models, Biological, Models, Statistical, Monte Carlo Method, Motion, Movement, Pattern Recognition, Automated, Subtraction Technique, Video Recording

We describe a particle filter that effectively deals with interacting targets--targets that are influenced by the proximity and/or behavior of other targets. The particle filter includes a Markov random field (MRF) motion prior that helps maintain the identity of targets throughout an interaction, significantly reducing tracker failures. We show that this MRF prior can be easily implemented by including an additional interaction factor in the importance weights of the particle filter. However, the computational requirements of the resulting multitarget filter render it unusable for large numbers of targets. Consequently, we replace the traditional importance sampling step in the particle filter with a novel Markov chain Monte Carlo (MCMC) sampling step to obtain a more efficient MCMC-based multitarget filter. We also show how to extend this MCMC-based filter to address a variable number of interacting targets. Finally, we present both qualitative and quantitative experimental results, demonstrating that the resulting particle filters deal efficiently and effectively with complicated target interactions.

PubMed ID16285378