Section-level relationships of North American ıt Agalinis (Orobanchaceae) based on DNA sequence analysis of three chloroplast gene regions

TitleSection-level relationships of North American ıt Agalinis (Orobanchaceae) based on DNA sequence analysis of three chloroplast gene regions
Publication TypeJournal Articles
Year of Publication2004
AuthorsNeel M.C, Cummings MP
JournalBMC Evol BiolBMC Evol Biol
Type of Article10.1186/1471-2148-4-15

BACKGROUND: The North American Agalinis are representatives of a taxonomically difficult group that has been subject to extensive taxonomic revision from species level through higher sub-generic designations (e.g., subsections and sections). Previous presentations of relationships have been ambiguous and have not conformed to modern phylogenetic standards (e.g., were not presented as phylogenetic trees). Agalinis contains a large number of putatively rare taxa that have some degree of taxonomic uncertainty. We used DNA sequence data from three chloroplast genes to examine phylogenetic relationships among sections within the genus Agalinis Raf. (=Gerardia), and between Agalinis and closely related genera within Orobanchaceae. RESULTS: Maximum likelihood analysis of sequences data from rbcL, ndhF, and matK gene regions (total aligned length 7323 bp) yielded a phylogenetic tree with high bootstrap values for most branches. Likelihood ratio tests showed that all but a few branch lengths were significantly greater than zero, and an additional likelihood ratio test rejected the molecular clock hypothesis. Comparisons of substitution rates between gene regions based on linear models of pairwise distance estimates between taxa show both ndhF and matK evolve more rapidly than rbcL, although the there is substantial rate heterogeneity within gene regions due in part to rate differences among codon positions. CONCLUSIONS: Phylogenetic analysis supports the monophyly of Agalinis, including species formerly in Tomanthera, and this group is sister to a group formed by the genera Aureolaria, Brachystigma, Dasistoma, and Seymeria. Many of the previously described sections within Agalinis are polyphyletic, although many of the subsections appear to form natural groups. The analysis reveals a single evolutionary event leading to a reduction in chromosome number from n = 14 to n = 13 based on the sister group relationship of section Erectae and section Purpureae subsection Pedunculares. Our results establish the evolutionary distinctiveness of A. tenella from the more widespread and common A. obtusifolia. However, further data are required to clearly resolve the relationship between A. acuta and A. tenella.