The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus).
Title | The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). |
Publication Type | Journal Articles |
Year of Publication | 2008 |
Authors | Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KLT, Salzberg SL, Feng L, Jones MR, Skelton RL, Murray JE, Chen C, Qian W, Shen J, Du P, Eustice M, Tong E, Tang H, Lyons E, Paull RE, Michael TP, Wall K, Rice DW, Albert H, Wang M-L, Zhu YJ, Schatz M, Nagarajan N, Acob RA, Guan P, Blas A, Wai CMan, Ackerman CM, Ren Y, Liu C, Wang J, Wang J, Na J-K, Shakirov EV, Haas B, Thimmapuram J, Nelson D, Wang X, Bowers JE, Gschwend AR, Delcher AL, Singh R, Suzuki JY, Tripathi S, Neupane K, Wei H, Irikura B, Paidi M, Jiang N, Zhang W, Presting G, Windsor A, Navajas-Pérez R, Torres MJ, F Feltus A, Porter B, Li Y, A Burroughs M, Luo M-C, Liu L, Christopher DA, Mount SM, Moore PH, Sugimura T, Jiang J, Schuler MA, Friedman V, Mitchell-Olds T, Shippen DE, dePamphilis CW, Palmer JD, Freeling M, Paterson AH, Gonsalves D, Wang L, Alam M |
Journal | Nature |
Volume | 452 |
Issue | 7190 |
Pagination | 991-6 |
Date Published | 2008 Apr 24 |
ISSN | 1476-4687 |
Keywords | Arabidopsis, Carica, Contig Mapping, Databases, Genetic, Genes, Plant, Genome, Plant, Molecular Sequence Data, Plants, Genetically Modified, sequence alignment, Sequence Analysis, DNA, Transcription Factors, Tropical Climate |
Abstract | Papaya, a fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3x draft genome sequence of 'SunUp' papaya, the first commercial virus-resistant transgenic fruit tree to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for fruit-tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica's distinguishing morpho-physiological, medicinal and nutritional properties. |
DOI | 10.1038/nature06856 |
Alternate Journal | Nature |
PubMed ID | 18432245 |
PubMed Central ID | PMC2836516 |
Grant List | R01 GM083873 / GM / NIGMS NIH HHS / United States R01 GM083873-05 / GM / NIGMS NIH HHS / United States R01 LM006845 / LM / NLM NIH HHS / United States R01 LM006845-08 / LM / NLM NIH HHS / United States |