Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes

TitleComparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes
Publication TypeJournal Articles
Year of Publication2004
AuthorsSeshadri R, Myers GSA, Tettelin H, Eisen JA, Heidelberg JF, Dodson RJ, Davidsen TM, DeBoy RT, Fouts DE, Haft DH, Selengut J., Ren Q, Brinkac LM, Madupu R, Kolonay J, A. Durkin S, Daugherty SC, Shetty J, Shvartsbeyn A, Gebregeorgis E, Geer K, Tsegaye G, Malek J, Ayodeji B, Shatsman S, McLeod MP, Smajs D, Howell JK, Pal S, Amin A, Vashisth P, McNeill TZ, Xiang Q, Sodergren E, Baca E, Weinstock GM, Norris SJ, Fraser CM, Paulsen IT
JournalProceedings of the National Academy of Sciences of the United States of AmericaProceedings of the National Academy of Sciences of the United States of America
Volume101
Type of Article10.1073/pnas.0307639101
KeywordsATP-Binding Cassette Transporters, Bacterial Proteins, Base Sequence, Borrelia burgdorferi, Genes, Bacterial, Genome, Bacterial, Leptospira interrogans, Models, Genetic, Molecular Sequence Data, Mouth, Sequence Homology, Amino Acid, Treponema, Treponema pallidum
Abstract

We present the complete 2,843,201-bp genome sequence of Treponema denticola (ATCC 35405) an oral spirochete associated with periodontal disease. Analysis of the T. denticola genome reveals factors mediating coaggregation, cell signaling, stress protection, and other competitive and cooperative measures, consistent with its pathogenic nature and lifestyle within the mixed-species environment of subgingival dental plaque. Comparisons with previously sequenced spirochete genomes revealed specific factors contributing to differences and similarities in spirochete physiology as well as pathogenic potential. The T. denticola genome is considerably larger in size than the genome of the related syphilis-causing spirochete Treponema pallidum. The differences in gene content appear to be attributable to a combination of three phenomena: genome reduction, lineage-specific expansions, and horizontal gene transfer. Genes lost due to reductive evolution appear to be largely involved in metabolism and transport, whereas some of the genes that have arisen due to lineage-specific expansions are implicated in various pathogenic interactions, and genes acquired via horizontal gene transfer are largely phage-related or of unknown function.